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Introduction 
Circulating Mesenchymal Stem Cells (MSCs) originating from the bone marrow have the 

ability to differentiate into cells of the mesoderm lineage and an innate tropism for tumor tissue 
in response to the inflammatory microenvironment present in malignant lesions. MSCs have 
been detected in the perivascular space of many tumors, including those of the prostate, and have 
been shown to be a critical element in oncogenic progression. MSCs are inherently non-
immunogenic, which prevents allogeneic MSCs from being rejected by normal host defense 
mechanisms. This immune-privileged status, together with their oncotropic properties, makes 
possible the infusion of allogeneic MSCs into patients for therapeutic purposes, such as the 
delivery of cytotoxic agents to sites of primary and metastatic prostate cancer. PRX302 is a PSA-
activated aerolysin-based protoxin that forms membrane pores and leads to necrosis by a 
proliferation-independent mechanism at low nanomolar concentrations. Importantly, PRX302 
binds with low nanomolar affinity to GPI-anchor proteins, which are highly expressed on the 
surface of all mammalian cells. Therefore, MSCs can be genetically manipulated to express the 
PRX302 transgene endogenously from a ‘safe harbor’ locus. Based upon this rationale we 
hypothesize that human bone marrow-derived mesenchymal stem cells (hMSCs) can be used as a 
cell-based targeting vehicle to selectively deliver therapeutic agents, such as PRX302, to primary 
and metastatic sites of prostate cancer, and thus spare host toxicity. 

 
Body 

Specific Aim 1: Optimize the recruitment efficiency of allogeneic human bone marrow-derived 
mesenchymal stem cells (hBM-MSCs) to human prostate cancers in preclinical animal models to 
maximize their potential as a therapeutic delivery vehicle. 
  

Initially, we had proposed to quantify the efficiency of hBM-MSC homing to prostate cancer 
xenografted subcutaneously, orthotopically, and intratibially based on quantification using cells 
fluorescently-labeled with CM-DiI, i.e., counting fluorescent cells (numerator) per field of 
DAPI-labeled nuclei (denominator). While we were able to qualitatively demonstrate that 
systemically-infused hBM-MSCs (1 x 106) are able to traffic to prostate cancer xenografts 
(Figure 1), we were not able to accurately quantify these results using this system. This was due 
to our inability to resolve the number of cells per fluorescent signal due to inconsistent labeling, 
both in terms of the staining intensity per cell and the staining pattern, which made absolute 
quantification using this method difficult and inaccurate (Figure 1).  

 
Figure 1: Tumor Trafficking of 
PrCSCs and hBM-MSCs to Human 
Cancer Xenografts in Mice. 
PrCSCs (A) and hBM-MSCs (B), 
but not PrECs (C), traffic to 
prostate cancer xenografts in vivo 
following systemic infusion. 
Fluorescently-labeled (CM-DiI, 
red) PrCSCs, hBM-MSCs, and 
PrECs (1 x 106) were infused 
intravenously (IV) into 
immunocompromised mice bearing 
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subcutaneous CWR22RH xenografts (3/group). Four days post-infusion, lungs and tumors were 
harvested and analyzed by fluorescence microscopy for the presence of CM-DiI-labeled cells. In 
contrast to the xenografts, all three cell types were found entrapped in the lungs following 
infusion (D-F). Nuclei counterstained with DAPI (blue). At least three images analyzed per 
tissue per animal, representative images shown. 
 

To overcome this challenge, we decided to optimize two different technologies for this 
purpose within our lab. The first of these was designed to allow characterization of the kinetics 
of MSC trafficking within the murine xenograft models described utilizing a Luc2 expression 
vector. The Luc2 gene has been engineered to improve mammalian expression and overall 
sensitivity. The Luc2 gene was amplified from the original pUAS-luc2 plasmid (#24343) 
obtained from Addgene and cloned into the pLenti-CMV-GFP-Puro expression vector (#658-5) 
also obtained from Addgene using standard molecular biology techniques to replace the GFP 
sequence with Luc2. By transducing hBM-MSCs with this lentiviral expression vector we were 
able to detect a bioluminescence signal from as few as 50 cells in vitro (Figure 2), which is a 4- 
to 12-fold improvement over the previous generation of luciferase expression constructs (1).  

 
Figure 2: Enhanced sensitivity of 
bioluminescent signal from hBM-MSCs 
expressing Luc2. Cells were transduced 
with a lentiviral expression vector encoding 
the Luc2 gene. Cells were plated in a six-
well plate at the indicated densities in 
duplicate and allowed to adhere overnight. 
Luciferin was added, and the 
bioluminescent signal was quantified using 
a Xenogen Bioluminescent Imaging 
System. 

 
An additional challenge that had to be overcome was the sensitivity of MSCs to polybrene 

(2), a reagent used to enhance the transduction efficiency of viral vectors. The use of polybrene 
resulted in reduced proliferation and general toxicity that limited the use of the transduced hBM-
MSCs for in vivo experiments. To circumvent this problem, polyamine sulfate was substituted 
for polybrene during the transduction, which has been shown to double transduction efficiencies 
without the toxicity typically observed with polybrene (3). hBM-MSCs have been successfully 
transduced with the Luc2 expression vector using an optimized polyamine sulfate transduction 
protocol for use in the xenograft trafficking experiments. Unfortunately, this system also did not 
prove sensitive enough to detect infused MSCs in live animals, though there was a small signal 
detected when the tumors were excised and imaged ex vivo following mechanical digestion.  

Quantification of MSC trafficking will be achieved using the second of these optimized 
techniques, BEAMing, which is a form of digital PCR (4-5). This technology overcomes 
problems with amplification bias associated with traditional PCR to accurately quantify rare 
numbers of cells within a complex population at frequencies of less than 1 in 10,000 based upon 
the presence of mutations or polymorphisms in the DNA sequence. For these purposes, a panel 
of six SNPs (Table 1) from stable genomic regions in prostate cancer has been identified that is 
suitable for differentiating between donor MSCs and prostate cancer cell lines (6-7). For a panel 
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of 6 SNPs, this equates to a probability of 1 in 4,049 that the infused MSCs would have an 
identical profile for all six SNPs analyzed as the xenografted prostate cancer cells.  

Table 1: Panel of 6 SNPs capable of differentiating between donor MSCs and prostate cancer 
cells. 

The SNP profile for this panel has already been determined for LNCaP, CWR22Rv1, and 
VCaP prostate cancer cell lines, in addition to three primary hBM-MSC lines currently in use 
within the lab (Table 2). These experiments were performed in collaboration with Sysmex-
Inostics, Inc. (Hamburg, Germany).  

 
Table 2: Differentiation of donor vs. host cells          Figure 3: Standard curve of MSCs spiked  
                using SNPs.                                                  into prostate cancer cells using BEAMing 

Additionally, this panel has been used to generate a “MSC standard curve” for determination 
of the assay-specific limit of detection. This “MSC standard curve” consisted of a dilution series 
of MSCs spiked into a suspension of prostate epithelial cells (LNCaP, 100%-0.001%). The 
sensitivity of the assay allows us to detect donor cells representing as few as 0.01% of the sample 
(Figure 3). An expanded standard curve in the 0.01-2% range using multiple prostate cancer 
epithelial cells (LNCaP, LAPC-4, and VCaP) is currently being processed to confirm 
reproducibility and sensitivity within this range.  

Importantly, this sensitivity is in the predicted range for MSCs homing to the human prostate 
that we determined using an optimized multi-parameter flow cytometry protocol on rapidly 
dissociated primary prostatectomy tissue (0.01-1.1%, Appendix I)(8). Once this validation is 
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complete, accurate quantification of MSC homing to prostate cancer xenografts in murine hosts 
will be performed as planned. 

Furthermore, a multi-parameter flow cytometry assay has been optimized that can accurately 
distinguish between human and mouse MSCs. This can also be used to quantify homing of 
infused human MSCs to prostate cancer xenografts. The results from these two assays will be 
used to validate each other and to optimize various strategies to enhance MSC homing to sites of 
prostate cancer. 
 
Specific Aim 2: Genetically modify hMSCs to endogenously express and secrete PRX302 using 
zinc-finger nuclease and integration-deficient lentiviral technologies to insert the transgene into a 
“safe-harbor” locus (HIV co-receptor CCR5) within the genome. 
 
This aim was modified to incorporate a better understanding of the delivery platform and 
enhance the potential for success. Insertion of the PRX302 protoxin (PSA-activated pro-
aerolysin) into the PIG-A locus, the first enzyme in the GPI-anchor biosynthesis pathway (9), 
would prevent self-sterilization by knocking out GPI-anchor synthesis and preventing the toxin 
from binding to the secreting cell’s surface (Figure 4).  

 
Figure 4: PSA-activated proaerolysin (PRX302) 
with a mutation in the GPI-anchor binding domain 
(R624A) has reduced toxicity against LNCaP 
prostate cancer cells. 

 
 
 
 
 

Zinc-finger nucleases (ZFNs) targeting the PIG-A locus have previously been generated 
with the help of our collaborator on this project, Dr. Linzhao Cheng (10). Vectors encoding these 
PIGA-targeted ZFNs have been obtained through a MTA with Dr. Keith Joung and Harvard 
Medical School and are currently present within the lab. Additionally, a integration-deficient 
lentiviral vector (IDLV) encoding the PIG-A homology arms required for homologous 
recombination-mediated insertion of the PRX302 transgene have been kindly provided by Dr. 
Linzhao Cheng as well (10). The PRX302 transgene will be subcloned from the pMMB66HE 
vector into the IDLV vector between the PIG-A homology arms. However, preliminary work in 
which HEK293T cells were transduced with the PRX302 transgene encoded in a GFP-expressing 
lentiviral vector (Figure 5) demonstrated that the protoxin ran at an aberrant size. This was 
shown to be the result of post-translational glycosylation due to mammalian expression and was 
shown to significantly reduce the activity of the toxin. These predicted N-glycosylation sites 
have been conservatively mutated (N>R) using site-directed mutagenesis, which restored a 
hemolytic activity (Figure 6). Though hemolytic activity was restored, a significant loss in 
activity compared to the bacterially-expressed recombinant protoxin was observed. A significant 
loss in yield was also observed, and therefore, both effects are potentially due to incorrect 
folding. Current work is underway to determine whether mutation of all five putative 
glycosylation sites is necessary and whether we can improve both yield and hemolytic activity 
through more selective mutation of these residues. 
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Figure 5: Mammalian cells transduced with a 
PRX302 expression vector including a GFP 
reporter. HEK293T cells were transduced with a 
lentiviral expression vector encoding the PRX302 
transgene and a GFP expression cassette driven off 
a single CMV promoter. A T2A sequence separates 
the PRX302 and GFP sequences, which results in a 
2A-mediated separation of the adjacent proteins via 
a translational skipping mechanism (11). This 
vector was generously provided by Dr. Cheng-Lai 
Fu and Dr. Hans Hammers, who generated the 
vector by cloning the T2A sequence into the pLVX-
AcGFP1-N1 expression vector (PT3994-5) from 
Clontech. 

 
Figure 6: Hemolysis assay demonstrating activity 
of recombinant PRX302 expressed in mammalian 
HEK293T cells. Bacterially expressed PRX302 
lyses ~70% of RBCs during a 1 hr incubation at 
37˚C. In contrast, PRX302 expressed in mammalian 
cells has no activity (data not shown). Following 
site-directed mutagenesis to conservatively mutate 
five putative N-glycosylation sites to arginine 
(PRX302*5), hemolytic activity was regained by the 
mammalian expressed protoxin as demonstrated by 
lysis of ~50% of RBCs during a 24 hr incubation. 

 
 
 
 

Upon successful generation of an optimized mammalian-expressed protoxin, the transgene 
will be subcloned back into the PIG-A homology IDLV vector. Subsequently, all three vectors 
(one with the PRX302 transgene flanked by the PIG-A homology arms and vectors for each of 
the ZFNs targeting the PIG-A locus) will be co-transfected into the target hBM-MSCs. 
Confirmation of PRX302 insertion into the 
target locus, and characterization of PRX302 
transgene expression and secretion will be 
analyzed using an optimized western blot 
protocol and an ELISA assay we recently 
developed (Figure 7).  

 
 
 
Figure 7: Sensitive detection of PSA-activate 
proaerolysin by (A) western blot and (B) 
sandwich ELISA. 
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These experiments are ongoing and will be completed as initially proposed along with a 
comparison of the trafficking efficiency of these genetically-modified hBM-MSCs to prostate 
cancer xenografts relative to their untransfected parental counterparts. Additional experiments 
will characterize any off-target, non-PIGA integration sites and their associated frequency in this 
system using both the Surveyor nuclease kit and ultra-deep sequencing.  

 
Specific Aim 3: Evaluate the therapeutic efficacy and host toxicity of genetically modified 
hMSCs expressing the PRX302 transgene using this optimized homing protocol in preclinical 
proof-of-principal studies against a series of human prostate cancer xenografts growing in NOG 
mice. 

 These experiments have not yet been initiated, but are set to commence over the next 
several months as results from the ongoing experiments in Specific Aims 1 and 2 are completed. 

 
Key Research Accomplishments 

• Tissue digestion and dissociation protocols for primary human prostatectomy tissue have 
been optimized 

• Optimization of flow cytometry-based analyses to characterize co-incident expression of 
multiple MSC-related markers on a single cell 

• Using these optimized protocols, we have demonstrated that MSCs are present in sites of 
human prostate cancer at a frequency of 0.01-1.1% of the total cells present. 

• Optimal growth conditions for the in vitro expansion of MSCs have been delineated 
• Stromal cells isolated from primary prostatectomy tissue have multi-lineage 

differentiation potential (i.e., adipocytes, osteoblasts, and chondrocytes) consistent with 
an MSC phenotype 

• Both hBM-MSCs and MSCs isolated from prostate tissue have tumor-tropic properties 
following systemic infusion into nude mice bearing prostate cancer xenografts 

• Viral transduction protocols have been optimized to both enhance transduction efficiency 
and reduce toxicity in MSCs 

• hBM-MSCs have been transduced with a Luc2 expression vector, and bioluminescent 
detection has been documented in vitro with as few as 50 cells 

• Mammalian cells have been successfully shown to synthesize and secrete the PRX302 
protoxin  

• The PRX302 protoxin is glycosylated when generated using a mammalian expression 
system 

• Site-directed mutagenesis has been used to conservatively mutate the N-linked 
glycosylation sites to glutamine residues 

• This modified protoxin has been shown to be expressed and secreted by mammalian cells 
in a functional form that is activated by PSA-dependent manner 

• Highly sensitive western blot and ELISA assays for the detection and quantification of 
PRX302 have been optimized 
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Reportable Outcomes 
 

Publications: 
 

• Brennen WN, Chen S, Denmeade SR, and Isaacs JT. Quantification of Mesenchymal 
Stem Cells (MSCs) at Sites of Human Prostate Cancer. Oncotarget. 2013 Jan; 4(1): 106-
17. 

• Brennen WN, Denmeade SR, and Isaacs JT. Mesenchymal Stem cells as a vector for the 
inflammatory prostate microenvironment. Endocr Relat Cancer. 2013 Aug 23; 20(5): 
R269-90. 

 
Oral Presentations: 
 

• Brennen WN. Characterization of Mesenchymal Stem Cells (MSCs) in the Human 
Prostate. 2012 Dec; Prostate Cancer Young Investigator’s Forum, Baltimore, MD.  

 
Poster Presentations: 
 

• Brennen WN, Levy O, Ranganath S, Schweizer M, Rosen M, Billet S, Bhowmick N, 
Denmeade SR, Karm JM, and Isaacs JT. Mesenchymal Stem Cells (MSC) as Cell-based 
Vectors for PSA-activated Proaerolysin to sites of Prostate Cancer. 2014 Feb; 9th Annueal 
Johns Hopkins Prostate Research Day, Baltimore, MD. 

• Brennen WN, Chen S, Denmeade SR, and Isaacs JT. Characterization and 
Quantification of Mesenchymal Stem Cells (MSCs) in Human Prostate Cancer. 2013 
May; SKCCC Research Fellows Day, Baltimore, MD. 

• Brennen WN, Chen S, Denmeade SR, and Isaacs JT. Characterization and 
Quantification of Mesenchymal Stem Cells (MSCs) in Human Prostate Cancer. 2013 
Mar; Multi-Institutional Prostate Cancer Program Retreat, Ft. Lauderdale, FL. 

• Brennen WN, Chen S, Denmeade SR, and Isaacs JT. Characterization and 
Quantification of Mesenchymal Stem Cells (MSCs) in Human Prostate Cancer. 2013 
Feb; Prostate Research Day, Baltimore, MD. 

• Brennen WN, Chen S, Denmeade SR, and Isaacs JT. Detection and Characterization of 
Mesenchymal Stem Cells (MSCs) in Human Prostate Cancer. 2012 Nov; Society for 
Basic Urologic Research (SBUR), Miami, FL. 

*2012 Travel Award Recipient  
• Brennen WN, Denmeade SR, and Isaacs JT. Mesenchymal Stem Cells (MSCs) as a 

Selective Delivery Vehicle for a PSA-activated Protoxin for Advanced Prostate Cancer. 
2012 Mar; Multi-Institutional Prostate Cancer Program Retreat, Ft. Lauderdale, FL. 

Additional Funding based on this work: 

• PCF Young Investigator Award: “T-cells Engineered to Selectively Deliver a PSA-
activated Protoxin to sites of Advanced Prostate Cancer”. 

• PCF-Movember Challenge Award: “First-in-Man Clinical Studies of Mesenchymal Stem 
Cell Based Therapy for Prostate Cancer”.   
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•  DOD Synergy Award #W81XWH-13-1-0304: “Mesenchymal Stem Cell-Based Therapy 
for Prostate Cancer”. 

Conclusion 
 

Studies arising from this fellowship have led to the quantification and characterization of 
MSCs present at sites of human prostate cancer, which has recently been published in the open-
access journal Oncotarget. Optimal growth conditions for expansion of MSCs in culture have 
been determined, and the capacity of these cells to traffic to prostate cancer xenografts in vivo 
has been demonstrated. These experiments are essential prerequisites and have laid the 
foundation for all future work seeking to develop MSCs as drug delivery vehicles to sites of 
advanced prostate cancer. Challenges related to the accurate quantification of MSC tumor 
tropism in vivo and the efficient transduction of this cell type with lentiviral expression vectors 
have been overcome. Furthermore, proof of PRX302 expression and secretion by mammalian 
cells in a functional form has been demonstrated following successful mutagenesis of N-linked 
glycosylation sites – critical components for the success of this therapeutic platform. The 
therapeutic strategy has been modified from its original incarnation to increase the probability of 
success by utilizing ZFNs targeting the PIG-A locus, rather than CCR5, and thereby, eliminating 
the potential for the protoxin-expressing cells to self-sterilize. Furthermore, all of the necessary 
reagents have been generated or obtained and are currently present within the laboratory to 
ensure successful completion of the proposed project. 
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Abstract
Mesenchymal stem cells (MSCs) have an inherent tropism for sites of inflammation, which are

frequently present in sites of cancer, including prostatic lesions. MSCs have been defined as

CD73/CD90/CD105 triple-positive cells in the absence of hematopoietic lineage markers with

the ability to differentiate into multiple mesodermal lineages, including osteoblasts,

adipocytes, and chondrocytes. Our group has previously demonstrated that MSCs represent

between 0.01 and 1.1% of the total cells present in human prostatectomy tissue. In addition

to their multi-lineage differentiation potential, MSCs are immunoprivileged in nature and

have a range of immunomodulatory effects on both the innate and adaptive arms of the

immune system. MSCs have been detected in an increasing array of tissues, and evidence

suggests that they are likely present in perivascular niches throughout the body. These

observations suggest that MSCs represent critical mediators of the overall immune response

during physiological homeostasis and likely contribute to pathophysiological conditions as

well. Chronic inflammation has been suggested as an initiating event and progression factor

in prostate carcinogenesis, a process in which the immunosuppressive properties of MSCs

may play a role. MSCs have also been shown to influence malignant progression through a

variety of other mechanisms, including effects on tumor proliferation, angiogenesis,

survival, and metastasis. Additionally, human bone marrow-derived MSCs have been shown

to traffic to human prostate cancer xenografts in immunocompromised murine hosts.

The trafficking properties and immunoprivileged status of MSCs suggest that they can be

exploited as an allogeneic cell-based vector to deliver cytotoxic or diagnostic agents

for therapy.
Key Words

" mesenchymal stem cell

" MSC

" inflammation

" prostate cancer

" multipotent stromal cell
Endocrine-Related Cancer

(2013) 20, R269–R290
Introduction
The prostate is the most common organ in the human

body to undergo neoplastic transformation when

accounting for both benign and malignant lesions.

Pathological benign prostatic hyperplasia (BPH) affects

O50% of men over the age of 50 years with nonclinical

incidence representing a far greater number (Berry et al.
1984). Similarly, autopsy studies have demonstrated

histological prostate cancer in as many as 50% of men

by the age of 50 years with a linear increase in incidence

for each subsequent decade of life (Delongchamps et al.

2006). The etiology of BPH and prostate cancer is unclear;

however, chronic inflammation has been suggested as a



E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review W N Brennen et al. MSCs and the inflammatory
prostate

20 :5 R270
contributing factor in both (Nelson et al. 2003, De Marzo

et al. 2007, Kramer et al. 2007, De Nunzio et al. 2011,

Sfanos & De Marzo 2012). The prostate, by virtue of its

anatomical nature, is among a subset of tissues with a

direct route of access to the external environment. Due to

this exposure, the prostate routinely comes into contact

with potentially infectious agents and frequently contains

focal sites of inflammation. Though inflammation is

commonly present, external pathogens often cannot be

identified within these lesions (De Nunzio et al. 2011),

suggesting that the inflammatory response persists after

the pathogen is cleared or non-pathogenic stimuli are

responsible. Other causative agents of prostatic inflam-

mation include dietary and hormonal factors, in addition

to chemical and physical irritations resulting from urine

reflux and corpora amylacea respectively (De Marzo et al.

2007, De Nunzio et al. 2011). Furthermore, damage to

epithelial cells and glandular structure as a result of these

factors can contribute to altered antigen processing and

presentation, which can generate an autoimmune

response if these peptides are not recognized as ‘self’ or

tolerance is broken (De Nunzio et al. 2011, Jackson et al.

2012). Independent of the origin, a chronic inflammatory

state can arise as made evident by an age-associated

persistent presence of an infiltrating leukocyte population

(Kramer et al. 2007, Nickel et al. 2008).

A heuristic model of prostate carcinogenesis suggests

that prostate cancer progresses through proliferative

inflammatory atrophy (PIA) and prostatic intraepithelial

neoplasia (PIN) precursor lesions prior to malignant

transformation (Fig. 1). PIA is defined as focal sites of

hyperproliferative epithelial atrophy that are frequently

associated with inflammation (De Marzo et al. 1999,

Nelson et al. 2003). PIA is often adjacent to areas of PIN,

which are characterized by intraductal cellular prolifer-

ation with no evidence of basement membrane and

stromal invasion (Clouston & Bolton 2012). During both

normal physiological processes and pathophysiological

states, dynamic interactions initiated by paracrine

mediators occur between the epithelium and cells

normally restricted to the stroma, including smooth

muscle cells, fibroblasts, bone marrow-derived mesench-

ymal stem cells (BM-MSCs), and various inflammatory

cells. The latter of these have not only been associated

with the initiation of prostate cancer but have also been

suggested as potential drivers of its progression by virtue

of DNA-damaging reactive oxygen species, a variety of

immunosuppressive mechanisms, and the secretion of

mitogenic and pro-angiogenic cytokines (Nelson et al.

2003, De Marzo et al. 2007, Sfanos & De Marzo 2012). Once
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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the cancer cells have penetrated the basement membrane,

they have direct contact with cells that were previously

restricted to paracrine interactions, in addition to direct

access to growth factors, survival signals, pro-invasion

molecules, and extracellular matrix proteins. In total,

these are collectively known as the tumor microenviron-

ment and can have profound effects on cancer pro-

gression, malignancy, and therapeutic outcome (Cunha

et al. 2003, Bissell & Hines 2011, Dayyani et al. 2011,

Hanahan & Weinberg 2011, Brennen et al. 2012, Correia &

Bissell 2012).

Chemokines, such as CXCL12 (SDF-1), CCL5

(RANTES), and CCL2 (MCP-1) and the rest of the

inflammation-associated secretory milieu, have been

shown to recruit MSCs to these sites as a result of the

high expression of chemokine and cytokine receptors on

their surface (Spaeth et al. 2008). Recently, our group has

demonstrated that MSCs are not only present at sites of

human prostate cancer but also represent 0.01–1.1% of the

total cells present in human prostatectomy tissue cores

(Brennen et al. 2013). MSCs have been shown to be critical

mediators of the overall immune response (Caplan 2009,

Newman et al. 2009, English & Mahon 2011) and,

therefore, may contribute to carcinogenesis through a

variety of mechanisms, including stimulation of prolifer-

ation, angiogenesis, and metastasis, in addition to their

immunosuppressive properties (Bergfeld & DeClerck 2010,

Klopp et al. 2011). These latter properties may be

particularly relevant in tumor progression as the cancer

cells must escape immune surveillance and clearance to

reach their full malignant potential (Fig. 1). Perhaps more

importantly, the tumor trafficking properties of MSCs

suggest that they could be used to deliver therapeutic or

diagnostic agents to sites of prostate cancer, both primary

and secondary lesions (Brennen et al. 2013).
MSCs: mesenchymal stem cells

Recently, there has been an increasing appreciation for the

role of MSCs, also known as multipotent stromal cells, in

modulating both innate and adaptive immune responses.

These cells were initially characterized by Friedenstein

et al. (1970) as clonogenic cells in culture that were

multipotent stromal precursors. Throughout much of the

early literature, these cells were referred to as colony-

forming unit fibroblasts or CFU-Fs (Friedenstein et al.

1976), until Caplan proposed the term ‘Mesenchymal

Stem Cells’ in 1991 (Caplan 1991). Over the ensuing years,

there has been much debate regarding the appropriateness

of this terminology (Horwitz et al. 2005, Bianco et al. 2008,
Published by Bioscientifica Ltd.



Normal 
Prostate 

Proliferative 
Inflammatory  
Atrophy (PIA) 

Prostatic 
Intraepithelial 

Neoplasia (PIN) 

Prostate 
Cancer 

Columnar 
Cell 

Basal 
Cell 

E
pi

th
el

iu
m

 
S

tr
om

a 

Mesenchymal Stem Cell (MSC) 

Dendritic  
Cell 

Fibroblast 

Lymphocyte 

Macrophage

Carcinoma-associated 
Fibroblast (CAF) 

Smooth  
Muscle  
Cell 

? 
? 

CCL2,CCL5,SDF-1,WNT, 

MMP,TGF-β,FGF9,EGF 

Immunomodulatory Signals Im
munomodulatory Signals

IL-4,-6
,-8

,-1
0,PDL1,M

-CSF, S
DF-1, C

CL2,

CCL5,TGF-β PG,ID
O, IF

N-γ,T
NFα,TSG-6

IL-4,-6,-8,-10,PDL1,M-CSF, SDF-1,CCL2,

CCL5,TGF-β PG,IDO, IFN-γ,TNFα,TSG-6

TGF-β

Figure 1

MSCs in the normal and malignant prostate. A heuristic model of prostate

carcinogenesis suggests that the normal gland progresses through

proliferative inflammatory atrophy (PIA) and prostatic intraepithelial

neoplasia (PIN) stages on its path to malignant transformation. MSCs likely

have significant immunomodulatory roles not only in the normal prostate

but throughout all stages of prostate cancer tumorigenesis and progression

as well. These properties are mediated through the secretion of various

chemokines (SDF1, CCL2, and CCL5), cytokines (IL4, IL6, IL8, IL10, M-CSF, IFN-

g, and TNFa) and other bioactive signaling molecules (TGF-b, PG, and IDO)

that can indirectly affect carcinogenesis through leukocyte intermediates

but also through direct effects on the cancer cells themselves. A full colour

version of this figure is available via http://dx.doi.org/10.1530/ERC-13-0151.
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Ho et al. 2008, Nombela-Arrieta et al. 2011); however, this

continues to be the accepted consensus in the literature.

The International Society for Cell Therapy has

minimally defined MSCs as plastic-adhering multipotent

cells of fibroblastoid morphology with the ability to

differentiate into cells of the osteogenic, adipogenic, and

chondrogenic lineages (Pittenger et al. 1999, Dominici

et al. 2006). MSCs have been further defined based upon

the expression of CD90 (Thy-1), CD105 (endoglin), and

CD73 (5 0-nucleotidase) in the absence of hematopoietic

lineage markers, including CD45, CD34, CD14 or CD11b,

CD79a or CD19, and HLA-DR expression (Dominici et al.

2006). Although some are more controversial than

others, there is also evidence to suggest that MSCs can

differentiate into myocytes (Wakitani et al. 1995, Crisan

et al. 2008), fibroblasts (Lee et al. 2010), pericytes (Hirschi

& D’Amore 1996, Crisan et al. 2008), and neurons

(Woodbury et al. 2000, Hofstetter et al. 2002, Bertani
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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et al. 2005, Krampera et al. 2007, Phinney & Prockop

2007), although neuronal differentiation appears to be

correlated with the age of the donor (Hermann et al. 2010,

Brohlin et al. 2012). The number of MSCs in an individual

declines with age, as demonstrated by a 100-fold decrease

in the ability of nucleated marrow cells to form colonies

(CFU-F), from w1 in 104 in newborns to w1 in 106 in the

elderly (Caplan 2009). Furthermore, while MSCs are

generally thought to be derived from the mesoderm

(Vodyanik et al. 2010), there is an initial wave of

neuroectodermal MSCs during embryogenesis that arise

from the neural crest (Takashima et al. 2007, Morikawa

et al. 2009). Additional evidence suggests that the

percentage of MSCs derived from the neural crest declines

with age (Takashima et al. 2007), which may explain the

loss of neuronal differentiation potential observed in

MSCs derived from older donors. Additionally, the

mesenchymoangioblast was also recently identified as a
Published by Bioscientifica Ltd.
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mesoderm-derived precursor able to generate both MSCs

and endothelial cells (Vodyanik et al. 2010). MSCs have

also been isolated from numerous peripheral tissues,

including fat, skin, dental pulp, and pancreas (Zuk et al.

2002, da Silva Meirelles et al. 2006, Zhang et al. 2006,

Davani et al. 2007, Crisan et al. 2008, Blasi et al. 2011) and

are likely present in all tissues at low levels as part of a

homeostatic surveillance mechanism.
MSCs: tissue of origin

MSCs isolated from these peripheral tissues are frequently

thought of as equivalent to those derived from bone

marrow due to significantly overlapping properties;

however, there is accumulating evidence to suggest that

there are differences between these populations, including

their expression profiles (Panepucci et al. 2004, Wagner

et al. 2005, Park et al. 2007, Noel et al. 2008, Jansen et al.

2010, Strioga et al. 2012) and differentiation potential

(Sakaguchi et al. 2005, Musina et al. 2006, Strioga et al.

2012). These differences may reflect a ‘memory’, epige-

netic or otherwise, associated with distinct signaling

events and cellular interactions that occur between MSCs

and unique microenvironments. For example, multiple

studies have shown that MSCs isolated from fat tissue, or

adipose-derived stem cells (ADSCs), have an increased

propensity to form adipocytes relative to those derived

from bone marrow (Sakaguchi et al. 2005, Musina et al.

2006). Both synovium- and BM-MSCs seem to have a

greater ability to generate chondrocytes than ADSCs

(Sakaguchi et al. 2005, Afizah et al. 2007). Additionally,

ADSCs generate osteoblasts with less efficiency relative to

their bone marrow-derived counterparts (Sakaguchi et al.

2005). However, other studies have shown that both

BM-MSCs and ADSCs have equal osteoblast and adipocyte

differentiation potential (De Ugarte et al. 2003, Krampera

et al. 2007, Noel et al. 2008, Pachon-Pena et al. 2011). Our

own studies suggest that MSCs from the prostates of

young, healthy men selectively lose their adipocyte

differentiation ability (W N Brennen, S Chen and J T

Isaacs 2013, unpublished observations), while those

isolated from cancerous prostates in older men retain

their tri-lineage differentiation potential (Brennen et al.

2013), which may reflect their more recent exodus

from the bone marrow and represent a more naı̈ve

commitment status.

Importantly, inter-individual variation in the prolif-

erative capacity and differentiation potential of donor-

derived MSCs can make the interpretation of such

comparisons difficult, which can be further compounded
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
by differences in optimal culture conditions that are yet to

be fully standardized for MSCs obtained from alternative

tissue sources (Huang et al. 2005, Sakaguchi et al. 2005,

Wagner et al. 2005, Ho et al. 2008, Pevsner-Fischer et al.

2011, Rada et al. 2011, Brennen et al. 2013). This variability

can be alleviated, in part, by comparing a panel of tissue-

specific MSCs isolated from a single individual. Indeed,

such studies appear to confirm observations suggesting

a restricted differentiation potential related to a tissue-

of-origin ‘memory’ (Sakaguchi et al. 2005, Afizah et al.

2007). For instance, BM-MSCs have greater chondrogenic

potential than ADSCs isolated from the same patient

(Huang et al. 2005, Afizah et al. 2007). Sakaguchi et al.

(2005) also demonstrated distinct differences in the

differentiation efficiencies of patient-matched MSCs

isolated from multiple tissues and expanded under similar

conditions. Furthermore, gene expression and proteomic

analyses of MSCs from different sources have also

demonstrated distinct profiles despite significant simi-

larities (Wagner et al. 2005, Noel et al. 2008, Jansen et al.

2010). For example, increased expression of osteogenesis-

and angiogenesis-associated genes was measured in

BM-MSCs and umbilical cord MSCs relative to each other

respectively (Panepucci et al. 2004). Minimally, these

observations highlight the heterogeneity of isolated MSC

populations with regard to their differentiation potential,

embryonic lineage, tissue source, and donor age.
MSCs in the clinic

Numerous clinical trials over the last decade were designed

to exploit the multipotent differentiation potential of MSCs

for a range of pathological conditions, including myocardial

infarction (MI), spinal cord injury, and osteogenesis

imperfecta. While promising results were obtained in early

phase clinical trials, the high hopes for these MSC-based

regenerative strategies were largely unrealized in the

accompanying phase III trials. Follow-up on these studies

suggested a lack of long-term tissue engraftment (!1%)

with no evidence of differentiation into the anticipated cell

types following systemic administration (Ankrum & Karp

2010). In contrast to the results from in vitro differentiation

assays, these clinical observations questioned the assump-

tion that MSC’s primary role in tissue repair is to

reconstitute damaged cell types. However, despite the lack

of differentiation, there were positive therapeutic effects

observed in select patients from these trials. Concurrent

laboratory investigations led to an emerging realization that

MSCs function through trophic and immunomodulatory

mechanisms based on the secretion of bioactive molecules
Published by Bioscientifica Ltd.
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(Krampera et al. 2003, Le Blanc et al. 2003b, Aggarwal &

Pittenger 2005, Zimmet & Hare 2005, Iso et al. 2007,

Prockop 2007, Caplan 2009). MSCs have been shown to

secrete numerous growth factors, cytokines, and chemo-

kines, in addition to pro-angiogenic, anti-apoptotic, and

anti-inflammatory signals, including transforming growth

factor b (TGF-b), granulocyte-macrophage colony-

stimulating factor (GM-CSF), interleukin 6 (IL6), regulated

on activation, normal T cell expressed and secreted

(RANTES), CCL2, vascular endothelial growth factor

(VEGF), hepatocyte growth factor (HGF), prostaglandins

(PGs), and IL10, to name a few (Newman et al. 2009,

Zhukareva et al. 2010, English & Mahon 2011). Although

some groups only detect IL10 in MSC-leukocyte co-cultures

(Tse et al. 2003, Beyth et al. 2005, Rasmusson et al. 2005),

others have reported the constitutive expression of IL10 by

MSCs in monoculture as well (Aggarwal & Pittenger 2005,

Barry et al. 2005, Coffelt et al. 2009, Mougiakakos et al. 2011,

Technau et al. 2011). Additionally, molecular profiling has

revealed that MSCs express a large repertoire of cytokine and

chemokine receptors that are believed to mediate their

trafficking to inflammatory sites (Spaeth et al. 2008). The

paracrine effects of these secreted molecules likely explain

the observed clinical benefits seen thus far and have formed

the underlying rationale for the majority of current MSC-

based clinical trials designed to treat various inflammatory

and autoimmune disorders.

To date, a number of clinical trials have been completed

in which ex vivo expanded MSCs have been administered for

applications as diverse as enhancing cardiac function post-

MI, promoting hematopoietic stem cell engraftment,

mitigating graft-vs-host-disease (GVHD), and treating a

host of autoimmune disorders (Lazarus et al. 2005, Le

Blanc et al. 2008, Hare et al. 2009, Garcia-Gomez et al. 2010).

The most commonly studied application of systemic

allogeneic MSCs has been as a means to decrease or prevent

GVHD. Two phase III trials enrolling a total of 452 patients

have evaluated the efficacy of allogeneic MSCs in patients

with GVHD have been completed. While neither trial met

its primary endpoint of complete response, there were some

clinical benefits observed in those with steroid-refractory

GVHD. These results ultimately lead to the approval in

Canada of Prochymal, a pre-manufactured, universal donor

MSC product, in acute pediatric GVHD (Prasad et al. 2011,

Osiris Therapeutics 2012). More importantly, as was true

with earlier phase studies, no adverse events were noted

after infusion of MSCs in any patient being treated on either

GVHD protocol. A variety of phase I/II studies testing the

effect of MSCs in the setting of MI, chronic obstructive

pulmonary disease, liver cirrhosis, lupus, and type II
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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diabetes have also been reported (Hare et al. 2009, Jiang

et al. 2011, Zhang et al. 2012, Li et al. 2013, Weiss et al. 2013).

Thus far, no significant MSC-related adverse events have

been reported across these various phase I/II studies (Lalu

et al. 2012). Currently, a number of additional randomized

trials are underway utilizing MSCs in a range of different

diseases (Garcia-Gomez et al. 2010). In summary, the

combined results from a large number of trials indicate

that i.v. administration of unmodified human BM-MSCs,

whether autologous or allogeneic, can be safely adminis-

tered to patients without producing significant side effects.
MSCs: firemen of the immune system

MSCs are generally thought to be non-immunogenic due

to their lack of both MHC-II expression and the associated

co-stimulatory molecules (Tse et al. 2003). Importantly,

MSCs do express low levels of MHC-I, which prevents

them from being recognized and lysed by NK cells

(Newman et al. 2009). Furthermore, the constitutive

expression of factor H makes MSCs resistant to comp-

lement-mediated lysis (Tu et al. 2010). Secretion of factor H

extends this protection to other cells in the local

microenvironment and represents one of many

mechanisms through which MSCs suppress both the

innate and adaptive immune responses (Fig. 2). MSCs

inhibit the proliferation and activation of NK cells

through expression of PGs and indoleamine dioxygenase

(IDO; English & Mahon 2011). MSCs secreted PGs have

also been shown to suppress mast cell degranulation,

trafficking, and tumor necrosis factor a (TNFa) expression

(Brown et al. 2011), in addition to promoting macrophage

M2 polarization (Prockop 2013). Secretion of TSG-6 by

MSCs has multiple anti-inflammatory properties, includ-

ing inhibition of TLR2-induced NF-kB signaling in

macrophages by blocking CD44 stimulation, abrogation

of neutrophil migration, and suppression of pro-

inflammatory protease activity (Lee et al. 2009, Prockop

& Oh 2012, Prockop 2013). Additionally, MSCs block the

secretion of pro-inflammatory cytokines from activated

macrophages, prevent the oxidative burst associated with

neutrophil function, and suppress eosinophil trafficking

to inflammatory tissues (Newman et al. 2009, English &

Mahon 2011). MSC-derived IL6 inhibits dendritic cell

(DC) maturation from monocytes, in addition to suppres-

sing the expression of MHC-II and the CD40 and CD86

co-stimulatory molecules required for T-cell activation

(Djouad et al. 2007). By blocking DC maturation and

antigen presentation, MSCs induce a tolerogenic pheno-

type in which DCs downregulate the expression of
Published by Bioscientifica Ltd.
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Figure 2

Immunosuppressive properties of MSCs on both the innate and adaptive

arms of the immune system. MSC trafficking from the bone marrow in

response to an inflammatory stimulus, in addition to MSCs, already present

in the local microenvironment can profoundly affect the overall immune

response. The immunosuppressive effects of MSCs are mediated through

both direct cell contact in some cases, and the secretion of numerous

paracrine signals that effect proliferation, survival, trafficking, maturation,

polarization, activation, cytotoxicity, and the secretion of additional

inflammatory mediators. These effects occur between MSCs and nearly all

components of both the innate and adaptive immune system, which

suggests that MSCs may represent a central hub in the regulatory networks

of the immune system. A full colour version of this figure is available via

http://dx.doi.org/10.1530/ERC-13-0151.
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pro-inflammatory cytokines, such as TNFa, while

upregulating the expression of IL10 and other anti-

inflammatory cytokines (Aggarwal & Pittenger 2005).

Inhibition of MHC-II-mediated antigen presentation

by DCs prevents T-cell activation and proliferation.

Furthermore, MSCs promote the generation of regulatory

T cells; suppress Th1, Th2, and Th17 polarization; and

inhibit the proliferation and activation of cytotoxic T cells

(CTLs); thereby, shifting the T-cell response to an

immunosuppressive state (Newman et al. 2009, English

& Mahon 2011). Multiple studies have also demonstrated

that MSCs inhibit B-cell activation, proliferation,

migration, and immunoglobulin expression (Corcione

et al. 2006, Newman et al. 2009). These effects are mediated

by both soluble factors and direct cell–cell contact; the

latter of which activates programmed death pathway-1

(PD-1) signaling and is at least partially responsible for the

attenuation of B-cell proliferation and altered cytokine

receptor expression in mice (Augello et al. 2005). These

observations suggest that a primary physiological function

of MSCs is to promote an immunosuppressive micro-

environment (Fig. 2). This MSC-mediated immunosup-

pression likely represents a critical negative feedback

mechanism to prevent unchecked chronic inflammation.

Together with other regulatory mechanisms, this negative

feedback helps to prevent an uncontrolled self-reinforcing

‘cytokine storm’, or hypercytokinemia, that can lead to

increased vascular permeability, tissue edema, auto-

immune disorders, fibrosis, acute respiratory distress

syndrome, organ failure, cancer, or even death in extreme

cases (Osterholm 2005, La Gruta et al. 2007).
MSCs: immunoprivileged or not?

While MSCs are traditionally thought to be non-

immunogenic and immunosuppressive due to the

properties described above, some recent studies have

suggested that MSCs may be immunogenic under certain

conditions (Eliopoulos et al. 2005, Nauta et al. 2006,

Huang et al. 2010). The rejection of allogeneic MSCs in

immunocompetent MHC mismatched mice was associ-

ated with an increase in infiltrating CTLs, natural killer

T cells, and NK cells (Huang et al. 2010). Additionally,

while syngeneic murine MSCs were associated with

tolerance to both donor and recipient antigens in an

allogeneic bone marrow transplant model, the same

study also demonstrated that transplantation of

MHC-matched MSCs and BM into an allogeneic

recipient decreased engraftment efficiency (Nauta et al.

2006). In contrast, no effect on BM engraftment was
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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observed when MSCs from a third-party donor were

used. Furthermore, while allogeneic MSCs only triggered

rejection when they were MHC-matched to the BM

donor, both third-party and BM-matched MSCs were

able to induce a memory T-cell response, which strongly

suggests that allogeneic murine MSCs are immunogenic

(Nauta et al. 2006). Unlike human MSCs, which only

express MHC-II following stimulation with interferon

(IFN)-g, the murine MSCs used in these studies express

low levels of MHC-II under non-stimulated conditions

(Eliopoulos et al. 2005). Unsurprisingly, this basal

expression of MHC-II renders murine MSCs immuno-

genic in an allogeneic setting and likely explains the

results observed in these studies.

Like humans and other higher order mammals, rat

MSCs, in contrast to their murine cousins, do not express

MHC-II antigens under basal conditions (Newman et al.

2009); however, induction of MHC-II expression was

detected following myogenic, endothelial, and smooth

muscle differentiation (Huang et al. 2010). Furthermore,

these differentiated MSCs were cleared from recipient

tissues and donor-specific alloantibodies were detected in

the serum of recipient rats at 5 weeks post-injection.

Similarly, expression of HLA-DR, a MHC-II antigen, is

induced following chondrogenic differentiation of adi-

pose-derived human MSCs (ADSCs) in vitro (Technau et al.

2011). Interestingly, these chondrocyte-differentiated

ADSCs continued to express the immunosuppressive

HLA-G antigen and secrete IL10, suggesting that they

may retain their immunosuppressive properties post-

differentiation. Increased immunogenicity following

differentiation would potentially explain the lack of data

demonstrating long-term engraftment in patients

following allogeneic MSC infusion. Indeed, Niemeyer

et al. (2008) found no evidence of BM-MSCs that were

osteogenically induced ex vivo prior to infusion in

recipient animals; by contrast, undifferentiated BM-MSCs

were detected in all recipients following xenotransplanta-

tion. Additionally, both allogeneic and autologous

BM-MSCs are susceptible to complement-mediated lysis

in the presence of serum following ex vivo culturing,

despite the expression of factor H and other negative

regulators (Li & Lin 2012).

Other studies have demonstrated that neither differ-

entiated nor undifferentiated allogeneic MSCs induce a

proliferative response in mixed lymphocyte cultures (Le

Blanc et al. 2003a) or in a rabbit model of osteogenesis (Liu

et al. 2006). Additionally, early studies failed to detect

alloantibodies against MSCs in the serum of patients

receiving therapeutic doses of allogeneic MSCs (Le Blanc
Published by Bioscientifica Ltd.
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et al. 2004, Sundin et al. 2007), suggesting that the

immunoprivileged phenotype of MSCs remains dominant

even if they do undergo differentiation in vivo. However,

recent studies have reported the presence of anti-donor

antibodies in the serum of a minority of patients. Weak

alloimmune reactions were detected in 3.7% of patients in

the POSEIDON randomized trial comparing allogeneic to

autologous BM-MSC therapy for ischemic cardiomyopa-

thy (Hare et al. 2012). In a press release reporting the

results from Mesoblast’s phase 2 trial evaluating MSCs

in patients with cardiovascular disease, anti-donor

antibodies were detected in 13% of patients (PRNewswire

2011). Importantly, no adverse clinical effects were

associated with the presence of alloantibodies in either

of these studies.

Ex vivo culturing conditions, particularly with respect

to FBS, have been shown to affect the immunogenicity of

MSCs and may explain some of the mixed results observed

between laboratories (Sundin et al. 2007, Newman et al.

2009). Multiple trials evaluating the use of autologous

MSCs for a variety of conditions have recently been

completed or are in progress, and reports on their

engraftment efficiency compared with their allogeneic

counterparts will address this possibility in a more

definitive manner. Importantly, there have been no

adverse clinical events, immunological or otherwise,

associated with either systemic or local administration of

MSCs in the thousands of patients that have been accrued

in these trials (Ankrum & Karp 2010, Lalu et al. 2012),

which emphasizes the overall safety of MSC-based

therapeutic strategies. The spontaneous malignant

transformation of human MSCs during prolonged expan-

sion ex vivo has also been raised as a potential safety

concern regarding their clinical use; however, reports on

this phenomenon were later corrected or retracted by

admissions of contamination in the MSC cultures with

other cancer cell lines (Garcia et al. 2010, Torsvik et al.

2010, Vogel 2010, Klopp et al. 2011). Of note, patients

enrolled in MSC-based clinical trials often receive multiple

doses of O108 cells, and no transformation of MSCs in

these patients have been reported to date. A recent

autopsy study of 18 patients receiving infusions of

HLA-mismatched MSCs found no evidence of ectopic

tissue formation or malignant tumors derived from donor

MSCs (von Bahr et al. 2012). Furthermore, in eight patients

with tissue samples collected more than 50 days post-

infusion, low levels of MSC donor DNA (!1/1000) were

only detected in the lung and kidney of a single patient

each. These data corroborate previous clinical obser-

vations, suggesting that MSCs have limited long-term
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
engraftment capabilities, which serves to highlight the

overall lack of tumorigenic potential for these cells in an

allogeneic therapeutic setting.
MSCs: complexities and immunostimulatory
properties

There is accumulating evidence to suggest that the

interactions between MSCs and immunological effector

cells are more complex than those previously appreciated

(Fig. 3). For example, MSCs are known to inhibit the

IL2-stimulated proliferation of resting NK cells; however,

activated NK cells are not only more resistant to

MSC-mediated proliferative suppression but have also

been shown to lyse both autologous and allogeneic

MSCs in the absence of IFN-g (Spaggiari et al. 2006). This

lysis occurs as a result of the expression of NK-activating

ligands by MSCs (Spaggiari et al. 2006). Binding of these

ligands to their cognate receptors on the surface of NK

cells triggers their recognition and destruction by NK cells,

despite the low levels of MHC-I expression on MSCs.

Exposure to IFN-g in an inflammatory microenvironment

significantly upregulates MHC-I expression on MSCs and

protects them from NK-mediated lysis (Eliopoulos et al.

2005, Spaggiari et al. 2006). Additionally, IFN-g-stimulated

MSCs also express MHC-II and can function as antigen-

presenting cells (APCs; Chan et al. 2006, Stagg et al. 2006).

Interestingly, these antigen-presenting properties are

biphasic and only present during a narrow range of

IFN-g concentrations with high levels leading to a

decrease in APC functions (Chan et al. 2006). MSCs also

possess direct antimicrobial activity mediated through the

secretion of cathelicidin hCAP-18/LL-37, a peptide with

activity against both Gram-positive and -negative bacteria

(Krasnodembskaya et al. 2010).

The differential activation of TLR signaling in MSCs

has also been shown to be a critical mediator of their

immunomodulatory properties (Pevsner-Fischer et al.

2007, Liotta et al. 2008). TLR-2 stimulation suppresses

MSC differentiation, while promoting their proliferation

and immunosuppressive phenotype (Pevsner-Fischer et al.

2007). By contrast, TLR-3 and -4 signaling inhibits this

immunosuppressive activity without affecting their differ-

entiation potential (Liotta et al. 2008). Activation of

different TLR signaling pathways in response to various

pathogen-associated molecular patterns (PAMPs) has also

been proposed to explain the ability of MSCs to promote

tissue repair and control the inflammatory reaction

without negatively impacting the ability of the immune

system to fight off invading pathogens (English & Mahon
Published by Bioscientifica Ltd.
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2011). These observations suggest a model where MSCs

would function in a dichotomous manner depending on

the nature of the infectious insult and the extent of the

immunological response. MSCs would initially behave as

APCs to activate an adaptive response following PAMP

recognition and IFN-g stimulation, and the immunosup-

pressive effects would take dominance during prolonged

inflammation with increasing IFN-g levels (Fig. 3). In

further support of this model, the effect of MSCs on

lymphocyte proliferation seems to be dependent on the

MSC-to-lymphocyte ratio present. Low ratios of MSCs to

lymphocytes, as would be seen in the initial phases of

inflammation, stimulated lymphocyte proliferation

through soluble paracrine mediators, whereas, higher

ratios, which may occur after a prolonged inflammatory

response, resulted in inhibition of lymphocyte prolifer-

ation (Bocelli-Tyndall et al. 2009). Evolutionarily, this

negative feedback mechanism would serve to limit the

immune response and prevent an unbridled leukocytic

infiltrate from initiating a self-reinforcing loop of chronic

inflammation, which could potentially lead to associated

pathological conditions. This parallels a recent model

proposed by English & Mahon (2011) in which they

describe MSCs as a sort of inflammatory rheostat or

‘licensing switch’ to modulate the immune response.

Additional support for the role of IFN-g in regulating the

immunomodulatory properties of MSCs comes from

observations demonstrating that MSC-mediated suppres-

sion of T-cell proliferation is enhanced by IFN-g secreted

by activated NK and T cells (Krampera et al. 2006, English

et al. 2007). Furthermore, in contrast to wild-type MSCs,

IFN-g receptor 1-null MSCs were unable to prevent GVHD

in mice, suggesting that inflammation and IFN-g signaling

in particular are required for the immunosuppressive

effects of MSCs (Ren et al. 2008b). Importantly, these

immunomodulatory properties are probably not dictated

by IFN-g alone but are the result of a complex interplay

between IFN-g, TNFa, and the entire panoply of inflam-

matory cytokines, chemokines, and signaling molecules

present within the local microenvironment.
MSCs and the inflammatory prostate

A model in which MSCs play a primary role in modulating

the immune response implies that these cells are present in,

or continuously fluxing through, all tissues. Accumulating

evidence supports this model. In addition to the bone

marrow, MSCs have been isolated from a growing list of

tissues, including adipose tissue, skin, muscle, dental pulp,

pancreas, intestine, lung, and peripheral blood (Zuk et al.
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
2002, Kassis et al. 2006, Zhang et al. 2006, Davani et al. 2007,

Lama et al. 2007, Crisan et al. 2008, Lanzoni et al. 2009, Blasi

et al. 2011), with all available evidence suggesting that they

reside in perivascular niches within all tissues (da Silva

Meirelles et al. 2006, Crisan et al. 2008). While this is a rare,

but detectable, population of cells within these tissues

under homeostatic conditions, there is a dramatic influx

from the bone marrow in response to an inflammatory

insult (Spaeth et al. 2008, Newman et al. 2009). It is well

known that the prostate is bombarded with inflammatory

and infectious agents throughout an individual’s lifetime,

with as many as 80% of men showing evidence of a

leukocytic infiltrate in their prostate when biopsied (De

Marzo et al. 2007, Nickel et al. 2008, Sfanos & De Marzo

2012). Additionally, the formation of corpora amylacea,

which are aggregates of inflammatory proteins, is thought

to begin early in life and increase with age, becoming

highly prevalent within the prostates of older men (Sfanos

& De Marzo 2012). The presence of prostatic inflammation,

or prostatitis, likely extends to all men at some point in

their lives as many inflammatory stimuli will be resolved

without generating overt clinical symptoms.

Therefore, it is unsurprising that MSCs can also be

isolated from the prostates of both young and old men

(Brennen et al. 2013, S Chen, W N Brennen and J T Isaacs

2013, unpublished observations). Lin et al. (2007) isolated

cells consistent with an MSC phenotype from BPH tissue, a

disease characterized by a hyper-proliferative stroma.

Despite their ability to differentiate into the myogenic,

adipogenic, and osteogenic lineages, the authors con-

cluded that these cells did not represent MSCs due to their

inability to generate neural cells, a property later shown to

decrease with age (Hermann et al. 2010, Brohlin et al.

2012), thereby explaining the lack of this particular

differentiation potential in BPH cells isolated from older

men. Additionally, MSCs incorporate into the re-growing

prostates of castrated mice following testosterone supple-

mentation (Placencio et al. 2010). In addition to older men

with prostate cancer, our own laboratory has cultivated

MSCs (CD90C/FAPC/CD105C/CD73C/HLA-DRK) from

the prostate of a 20-year-old healthy organ donor (S Chen,

W N Brennen and J T Isaacs 2013, unpublished obser-

vations), suggesting that MSCs are present in the prostate

throughout an individual’s lifetime to varying degrees.

Chronic inflammation is thought to be an initiating

event for prostatic carcinogenesis (Nelson et al. 2003, De

Marzo et al. 2007). Numerous factors have been implicated

in the initiation of an inflammatory microenvironment

within the prostate, including diet, infectious agents,

physical trauma induced by corpora amylacea, hormonal
Published by Bioscientifica Ltd.



Degree of Inflammation & Immunological Response 

Immuno-Suppressive
Effects 

Immuno-Stimulatory
Effects 

MSC 

Figure 3

The dichotomous role of MSCs in modulating the immune response

depends on the degree of the immunological assault. Evidence suggests

that during the initial stages of an inflammatory response,MSCs can behave

as antigen-presenting cells and have immunostimulatory effects that

activate an adaptive immune response following PAMP recognition and

IFN-g stimulation. As concentrations of IFN-g, TNFa, and other inflammatory

cytokines rise during prolonged inflammation and the lymphocyte-to-MSC

ratio increases, the immunosuppressive properties gain dominance and

serve as a negative feedback mechanism to prevent unchecked chronic

inflammation that can contribute to pathogenesis. A full colour version of

this figure is available via http://dx.doi.org/10.1530/ERC-13-0151.
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changes, and urine reflux (Sfanos & De Marzo 2012).

Independent of the cause, the resulting inflammatory

signals act as a chemoattractant for circulating BM-MSCs

(Fig. 1) due to the extensive array of chemokine and

cytokine receptors expressed on their cell surface (Spaeth

et al. 2008). CXCL12 (SDF-1), CCL5 (RANTES), and CCL2

(MCP-1), in particular, have been shown to be highly

overexpressed in prostate cancer (Sun et al. 2003, Vaday et al.

2006, Fujita et al. 2010), all of which have also been

implicated in MSC trafficking to inflammatory sites (Spaeth

et al. 2008). Multipotent MSCs of mouse origin have been

isolated from prostate cancer xenografts using a side

population assay (Santamaria-Martinez et al. 2009).

Additional evidence consistent with the presence of MSCs

in human prostate cancer includes the characteristic over-

expression of CD90 (True et al. 2010), a marker of not only

MSCs but also endothelial cells, hematopoietic precursors,

neurons, thymocytes, and NK cells. Interestingly, in a series

of prostate cancer tissue samples with high CD90

expression, these same authors showed a non-comparable

increase in CD45-positive cells, suggesting that the

increased CD90 expression was not merely due to excessive

leukocyte infiltration (Liu et al. 2004). Importantly, not all

these extra CD90-positive cells are likely to represent bona

fide MSCs as this population also includes MSCs at various

stages of differentiation, endothelial cells, hematopoietic

progenitors, and carcinoma-associated fibroblasts (CAF).

Furthermore, while CD90 expression is significantly

elevated in malignant prostatic lesions, rare CD90C cells
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
can also be detected in normal prostate tissue (Zhao & Peehl

2009, True et al. 2010), which is consistent with the presence

of a small population of MSCs in all tissues. CD90-positive

cells have also been identified in cultures isolated from

primary human prostatic stromal cells (Zhao & Peehl 2009).

While the authors of this study concluded that these cells

did not represent MSCs, it should be noted that CD90hi cells

were only compared with CD90lo, rather than CD90-

negative cells. Additionally, the differentiation potential

of these two CD90-positive populations was not investi-

gated. We would suggest that both these populations likely

represent MSCs, albeit potentially ones at different stages of

differentiation or lineage commitment. Our own studies

clearly indicate the presence of MSCs in multiple primary

prostate cancer specimens obtained directly from the

operating room prior to expansion in tissue culture

(Brennen et al. 2013). While CD90 expression has been

proposed as a potential cancer biomarker (True et al. 2010),

the relationship between CD90 expression and PIA or PIN,

which are believed to be prostate cancer precursor lesions,

has not been studied. Coupled with other characteristic

MSC markers, this would help to determine whether MSCs

traffic to these inflammatory precursor lesions as an early

event in prostate carcinogenesis.
MSCs: effects on tumor progression
and metastasis

The role of MSCs in the pathogenesis of cancer is complex

and likely related to the balance of competing pro- and

anti-tumorigenic forces. Numerous mechanisms have

been proposed to play a role in the ability of MSCs to

promote tumor growth, including stimulation of prolifer-

ation, angiogenesis, and metastasis, in addition to the

immunosuppressive properties described earlier.

Co-inoculation of MSCs with tumor cells has been

shown to increase xenograft growth in models of

melanoma and lymphoma, in addition to colon, breast,

and lung cancer (Bergfeld & DeClerck 2010, Klopp et al.

2011). Tumor growth can be further fueled by promoting

an increased tumor vasculature through the secretion of

pro-angiogenic factors by MSCs, including VEGF, TGF-b,

platelet-derived growth factor (PDGF), and basic fibroblast

growth factor (bFGF) (Bergfeld & DeClerck 2010, Bianchi

et al. 2011). MSCs are also frequently found in perivascular

niches and can promote vessel stabilization through

pericyte-like functions (da Silva Meirelles et al. 2006,

Crisan et al. 2008, Bianchi et al. 2011). Additionally, MSCs

have been shown to enhance the metastatic potential of

breast and colon cancer cells in xenograft models
Published by Bioscientifica Ltd.
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(Karnoub et al. 2007, Klopp et al. 2011), in addition to

promoting a pro-tumorigenic environment in the bone

marrow (Bergfeld & DeClerck 2010). The immunosuppres-

sive properties of MSCs have also been proposed as a

mechanism to enable the tumor to escape host immune

surveillance (Bergfeld & DeClerck 2010). Extensive reviews

on the relationship between MSCs and cancer have

previously been published elsewhere (Bergfeld & DeClerck

2010, Bianchi et al. 2011, Klopp et al. 2011).

While the pro-tumorigenic role of MSCs is more easily

understood, there are also a large number of studies

demonstrating anti-tumorigenic effects of MSCs for reasons

that are less clear (Klopp et al. 2011) but include pro-

inflammatory effects and the downregulation of survival

signals mediated through the Akt and Wnt pathways

(Ohlsson et al. 2003, Khakoo et al. 2006, Qiao et al. 2008).

An attempt to reconcile these conflicting observations has

recently been discussed by Marini and colleagues, who

conclude that there is currently no clear explanation for

these divergent findings (Klopp et al. 2011). The dichot-

omous role of MSCs in the immune system likely plays a

role in this tumorigenic response; however, both pro- and

anti-tumorigenic effects have been observed in both

immunocompromised and immunocompetent animals,

suggesting that this relationship is more complex than

merely a function of their immunomodulatory properties.
MSCs: role in prostate carcinogenesis

Specifically, with regard to MSCs and prostate cancer,

several in vitro investigations have attempted to understand

how the interactions between these two cell types may

contribute to carcinogenesis in both the primary and the

metastatic tumor microenvironments (Fig. 1). FGF-9 and

paracrine factors secreted by bone metastatic PC3 cells

stimulate osteoblastic differentiation of human BM-MSCs,

whereas conditioned medium from non-metastatic

CWR22Rv1 cells did not (Fritz et al. 2011). This

is particularly interesting in light of the well-known

observation that prostate cancer frequently generates

osteoblastic lesions when it metastasizes to the bone.

Later studies demonstrated that the pro-osteoblastic effect

of PC3-conditioned media (PC3-CM) was due to the

presence of epidermal growth factor receptor (EGFR)

ligands, which also stimulated the proliferation of human

BM-MSCs, but suppressed adipocyte and osteoclast differ-

entiation (Borghese et al. 2012). Interestingly, significant

levels of new bone formation in vivo were only observed

when MSCs were injected intra-tibially in the presence of

PC3 cancer cells but not in their absence (Chanda et al.
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
2009). PC3-CM also stimulated IL6 and CCL5 secretion by

MSCs, the latter of which led to increased cell migration;

reciprocally, MSCs not only promoted PC3 proliferation

and colony formation but also protected them from

docetaxel-induced toxicity through paracrine mediators

(Borghese et al. 2012). Of note, in response to radiation and

cytotoxic chemotherapies, stromal cells in the prostate

tumor microenvironment were recently shown to secrete

paracrine factors, including WNT16B, that promote the

survival of adjacent cancer cells and lead to enhanced

therapeutic resistance (Sun et al. 2012). Ye et al. (2012) have

shown that media conditioned by human BM-MSCs not

only upregulates MMP-2/-9 expression in PC3 cells but also

promotes their migration and invasion via TGF-b signaling

pathways. Additionally, oncostatin M was recently shown

to induce both TGF-b1 and periostin expression in human

ADSCs and promote PC3 adhesion (Lee et al. 2013).

To date, there have only been a limited number of

studies investigating the effect of MSCs on prostate tumor

growth in vivo, and the majority of those have demon-

strated little to no effect (Table 1). It should be mentioned,

however, that most of these studies have utilized the PC3

cell line, and therefore, these analyses should be extended

into other models before making generalized conclusions.

Khakoo et al. (2006) demonstrated that human BM-MSCs

suppress tumor growth in a model of Kaposi’s sarcoma by

inhibiting Akt activation in a cell contact-dependent

manner; however, when co-cultured with PC3 cells,

these same MSCs had no effect on phospho-Akt levels,

nor did they alter xenograft growth in immunocompro-

mised animals. No effect on tumor weight or animal

survival was observed in mice bearing PC3 tumors who

received three weekly i.v. injections of 2!106 human

BM-MSCs (Wang et al. 2012). Rat BM-MSCs transduced

with the herpes simplex virus thymidine kinase gene

(HSV-TK) had no effect on PC3 xenograft growth in the

absence of ganciclovir treatment (Song et al. 2011).

Additionally, human BM-MSCs had no effect on tumor

take or growth rates when co-injected with DU145 cells

(Pessina et al. 2011). A study by Zhang et al. (2011)

demonstrated that rat BM-MSCs injected into already

established tumors had no effect on PC3 xenograft growth.

Additionally, C3H10T1/2 embryonic murine MSCs

co-injected with PC3 cells also had no effect on intratibial

tumor growth (Fritz et al. 2008). By contrast, Chanda et al.

(2009) showed that adult murine MSCs injected into

already established intratibial PC3 tumors suppressed their

growth and promoted bone regeneration, although the

effect was less pronounced than when the MSCs were

co-injected with the tumor cells simultaneously. Using the
Published by Bioscientifica Ltd.
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TRAMP-C2 model, Ren et al. (2008a) demonstrated that

murine BM-MSCs had no effect on lung metastasis when

injected 10 days post-tumor cell inoculation. Zolochevska

et al. (2012) showed that human ADSCs had no effect on

PC3 xenograft growth in immunocompromised animals

nor did murine ADSC significantly stimulate xenograft

growth in the immunocompetent TRAMP-C2-Ras model.

Lee et al. (2013) also demonstrated that co-inoculation of

human ADSC had no effect on PC3-M xenograft growth in

the absence of oncostatin M.

By contrast, Lin et al. (2010) showed that implanted

ADSCs were recruited to PC3 xenografts on the opposite

flank via the CXCL12/CXCR4 axis where they stimulated

tumor growth, at least partially through enhanced

angiogenesis and FGF2 expression. A study by Cavarretta

et al. (2010) also suggested that unmodified human ADSCs

co-injected subcutaneously with PC3 cells accelerated

tumor growth and mortality by a few days; however,

systemically administered ADSCs expressing cytosine

deaminase (CD) significantly suppressed PC3 tumor

growth even in the absence of 5-fluorocytosine (5-FC)

treatment. Additionally, Prantl et al. (2010) reported

increased tumor growth when MDA-PCA-118b cells were

co-inoculated with human ADSCs. In contrast to previous

reports, Ye et al. (2012) observed a significant increase in

tumor volumes when PC3 cells were co-injected with

human BM-MSCs. Taichman and colleagues recently

reported that human BM-MSC stimulated PC3 xenograft

growth when co-inoculated at ratios of 1:100 through a

CXCR6/CXCL16-dependent mechanism (Jung et al. 2013).

They further demonstrated that the recruitment of murine

MSC to murine RM1 prostate cancer tumors in vivo was

CXCL16 dependent and the number of MSCs present in

the tumor correlated with tumor growth. Furthermore,

CXCR6 signaling in BM-MSC induced their conversion to a

CXCL12-expressing CAF phenotype, which has been

implicated in prostate cancer metastasis (Jung et al. 2013).

These conflicting results regarding the influence of

MSCs on prostate cancer growth may be due to differences

in the ratio of MSCs to tumor cells, the absolute number of

MSCs injected, or the timing of their administration

relative to tumor inoculation. Furthermore, there does

not seem to be a clear relationship between the immuno-

genicity of the MSCs and tumor cells used nor the

immunological status of the xenograft hosts (Table 1). Of

note, a recent study by Marini and colleagues suggested

that local ADSCs were more likely to be integrated into the

fibrovascular network of the early tumor, whereas their

bone marrow-derived counterparts were more likely to be

localized to the tumor periphery where they may play a
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
role in tissue remodeling and metastasis (Kidd et al. 2012).

Interestingly, there does seem to be a higher incidence of

pro-tumorigenic effects observed in experiments using

ADSCs compared with BM-MSCs in the prostate-specific

studies described earlier and in those reviewed by Klopp

et al. (2011), but this is not exclusively true.

Both ADSCs and BM-MSCs have also been shown to

give rise to CAF (Fig. 1; Mishra et al. 2008, 2009, Paunescu

et al. 2011, Kidd et al. 2012, Jung et al. 2013), which have

been implicated in nearly all stages of prostate cancer

carcinogenesis, including initiation, progression, inva-

sion, and metastasis (Chung 1991, Olumi et al. 1999,

Bhowmick et al. 2004, Franco et al. 2010, Giannoni

et al. 2010, Brennen et al. 2012, Li et al. 2012). Human

prostate-derived CAF co-implanted with initiated but

non-tumorigenic human prostate epithelium into immuno-

compromised murine hosts significantly enhances tumor

growth (Olumi et al. 1999). Loss of TGF-b responsiveness

in fibroblasts through genetic manipulation results in

murine PIN-like lesions (Bhowmick et al. 2004) and

promotes mixed bone lesions in intratibial models of

metastasis (Li et al. 2012). Conditioned media from

activated fibroblasts promotes epithelial-to-mesenchymal

transition in PC3 cells in vitro, in addition to stimulating

invasiveness and prostasphere formation (Giannoni et al.

2010). These same authors went on to demonstrate that

prostate-derived CAF enhanced PC3 aggressiveness in vivo

by promoting tumor formation and facilitating lung

micrometastases (Giannoni et al. 2010). The role of CAF

in the progression of tumors from multiple tissues,

including breast, colon, and pancreas in addition to the

prostate, are well described and have been extensively

reviewed elsewhere (Kalluri & Zeisberg 2006, Orimo &

Weinberg 2006, Franco et al. 2010, Shimoda et al. 2010).

Our own studies suggest that CAF derived from human

prostates are enriched in MSCs (Brennen et al. 2013). These

seemingly contradictory observations regarding the well-

known tumor-promoting properties of CAF and the lack of

any effect in the majority of the studies described earlier

using MSCs serves to further reinforce the idea that MSCs

isolated from different compartments have divergent

phenotypes. Perhaps unsurprisingly, this implies that

prostate-derived CAF are different than the BM-MSCs

from which at least a subset of them is derived. These

differences likely arise as a result of their developmental

origin and distinct signaling events received through

interactions with the tissue and tumor microenviron-

ments in which they are found. Additionally, these CAF

may pass through an ADSC intermediate stage depending

on their mode of recruitment, which may further add to
Published by Bioscientifica Ltd.
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the complexity and heterogeneity observed in the

phenotypic and functional differences observed in these

cells (Kidd et al. 2012).
MSCs: tumor-targeting vectors

Available evidence strongly suggests that the inherent

tropism of MSCs for tumor tissue can be exploited to

deliver therapeutic and diagnostic agents. Indeed, much

preclinical work has already been performed in this area

using MSCs derived from a variety of species and tissue

sources (Ciavarella et al. 2011, Shah 2012). In addition to

the tumor-targeting properties of MSCs, their immuno-

privileged nature suggests that large quantities of these

cells can be harvested from a healthy donor, expanded,

and manipulated ex vivo prior to infusion into multiple

allogeneic patients as an ’off-the-shelf’ therapy. This latter

point not only makes this therapeutic strategy more

practical with regard to time and cost but also alleviates

ethical considerations related to re-infusing the cancer

patient’s own (autologous) cells with regard to their

potential to influence tumor malignancy.

A common theme of these strategies is to utilize

genetic engineering techniques to generate MSCs that

express various molecules with anticancer properties,

which are then delivered to the tumor by the MSCs via

systemic circulation. Generally, these MSC-delivered

anticancer agents fall into one of several categories:

immunostimulatory agents, oncolytic viruses, growth

factor antagonists, pro-apoptotic factors, anti-angiogenic

compounds, or prodrug-converting enzymes. Marini et al.

pioneered the use of adenoviral transduced MSCs to

deliver IFN-b to sites of cancer and have demonstrated

efficacy in preclinical models of melanoma, breast, and

pancreatic cancer (Studeny et al. 2002, 2004, Kidd et al.

2010). Delivery of IFN-b by genetically engineered MSCs

has also shown efficacy in models of prostate bone and

lung metastasis (Ren et al. 2008a, Chanda et al. 2009).

Additional immunostimulatory agents, including IL2, IL7,

IL12, IL18, IL23, and CX3CL1, have also been engineered

into the MSC genome and used to treat a variety of

preclinical cancer models, such as glioma, melanoma,

Ewing’s sarcoma, and renal cell carcinoma (Nakamura

et al. 2004, Elzaouk et al. 2006, Duan et al. 2009, Gao et al.

2010, Gunnarsson et al. 2010).

Multiple groups have also begun developing MSCs as

delivery vectors for oncolytic viruses (Nakashima et al.

2010). Cell-based delivery of oncolytic viruses cannot only

enhance the tumor-targeting potential of these viruses but

can also reduce their neutralization by shielding them
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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from pre-existing antiviral antibodies (Mader et al. 2009,

Huang et al. 2013). Dembinski et al. (2010) demonstrated

that delivery of a conditionally replicating fiber-modified

adenoviral vector using MSCs reduced off-target infection

and systemic toxicity following i.p. injection in a model of

disseminated ovarian cancer. The Pereboeva and Curiel

groups have also shown increased efficacy and survival

following therapy with conditionally replicating adeno-

virus-transduced MSCs in ovarian xenograft and breast

cancer lung metastasis models (Komarova et al. 2006,

Stoff-Khalili et al. 2007).

The delivery of various prodrug-converting enzymes,

including carboxylesterases, CD, and HSV-TK, have also

generated provocative results in various preclinical

models. Co-inoculation of MSCs expressing HSV-TK with

PC3 prostate cancer cells inhibited xenograft growth when

treated with ganciclovir, but not in its absence (Song et al.

2011). Furthermore, systemically delivered MSCs expres-

sing HSV-TK showed efficacy against orthotopic pancrea-

tic and hepatic xenograft growth and reduced the

incidence of pancreatic metastasis (Zischek et al. 2009,

Niess et al. 2011). Altaner and colleagues demonstrated

that both co-inoculated and systemically administered

ADSCs engineered to express CD significantly reduced

tumor burden in animals bearing PC3 prostate cancer

xenografts following daily doses of 5-FC (Cavarretta et al.

2010). This same group has also shown efficacy against HT-

29 colon cancer and A375 melanoma xenograft growth

in vivo using CD-transduced ADSCs (Kucerova et al. 2007,

2008). Additionally, MSCs engineered to express carboxyl-

esterase, which metabolizes CPT-11 into an active topo-

isomerase I inhibitor (SN-38), have shown efficacy against

mouse models of glioma (Yin et al. 2011, Choi et al. 2012).

Additional strategies seeking to utilize the tumor-

targeting properties of MSCs include the delivery of pro-

apoptotic factors, such as TRAIL (Grisendi et al. 2010, Shah

2012); anti-angiogenic agents, such as thrombospondin-1

(van Eekelen et al. 2010) and endostatin (Yin et al. 2011);

and growth factor antagonists, such as NK4 (Kanehira et al.

2007). An interesting approach recently described by

Spitzweg et al. permits both imaging and therapy to be

performed using MSCs transfected with the sodium iodide

symporter (NIS), which is normally responsible for

concentrating iodide in the thyroid (Knoop et al. 2011).

NIS expression not only resulted in selective accumulation

of iodine in hepatocellular tumors in mice, which made

both 123I scintigraphy and 124I PET imaging possible but

also abrogated xenograft growth following systemic

administration of the radionuclide 131I.
Published by Bioscientifica Ltd.
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While these strategies have shown great promise in

numerous preclinical models, none have entered into

clinical trials yet, although the relatively short time frame

since their inception precludes any judgment on their

eventual clinical potential. In fact, the world’s first

unmodified MSC therapy only received approval as

recently as 2012 in Canada for the treatment of GVHD

(Osiris Therapeutics 2012). However, one attribute of these

approaches that may ultimately harm their clinical

translation is the failure to take into consideration the

trafficking of MSCs to multiple sites throughout the body

in addition to the tumor following systemic infusion after

the initial entrapment in the lung, including the spleen,

kidneys, liver, bone marrow, and other sites of inflam-

mation and remodeling (Gao et al. 2001, Devine et al.

2003, Allers et al. 2004, Detante et al. 2009, Choi et al.

2011, von Bahr et al. 2012). This may increase the off-

target/non-tumor effects and systemic toxicity associated

with these therapies following infusion. One strategy to

circumvent these potential off-target effects is the use of

MSCs to deliver prodrugs that are activated in a tumor- or

tissue-specific manner. As one example, ongoing studies

in our own laboratory in collaboration with multiple other

groups are seeking to develop MSCs as vectors to

deliver prostate-specific antigen (PSA)-activated prodrugs

(Denmeade et al. 2003) and protoxins (Williams et al.

2007) to sites of metastatic prostate cancer using multiple

therapeutic platforms, including nanoparticle-loading

strategies and genetic manipulation (Brennen et al.

2013). In this therapeutic scenario, prodrugs delivered by

MSCs to nontarget tissues will not be activated due to the

lack of enzymatically active PSA, which is only present in

the prostate and at sites of prostate cancer metastases,

thereby reducing systemic toxicity. Additionally, Karp and

colleagues have demonstrated that MSC homing and

engraftment in inflamed tissue can be increased by

decorating their surface with proteins involved in leuko-

cyte extravasation (Sarkar et al. 2011). Cell engineering

strategies such as this and continued optimization of viral

transduction methods for MSCs (Lin et al. 2012) will help

translate these strategies into the clinic more efficiently.
Summary

In summary, MSCs have emerged as critical regulators of

the immune response. The role of these cells in both the

innate and adaptive immunity is complex and has yet to

be fully elucidated. MSCs have a multitude of immuno-

suppressive properties through effects on nearly every

component of the immune system. Additionally, MSCs
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-13-0151 Printed in Great Britain
also have immunostimulatory effects on many of these

same components under specific conditions, particularly

during the initial phases of an immunological assault. The

balance between these competing forces, which is dictated

by IFN-g and the rest of the inflammatory cytokine milieu,

plays a role in numerous pathological maladies, including

cancer. MSCs and their progeny have a complex role in

tumor biology with both pro- and anti-tumorigenic effects

being described. While the immunomodulatory properties

of these cells certainly play an important role in this

relationship, available evidence suggests that the whole

story is far more complex and dependent on numerous

interactions with other cells present in the tumor

microenvironment, both static residents and dynamic

infiltrators. However, despite the incomplete understand-

ing of MSC physiology, current data strongly suggest that

these cells have an inherent tropism for tumor tissue based

on the inflammatory microenvironment frequently

present. These tumor trafficking properties, immunopri-

vileged nature, and expansion capabilities have the

potential for exploitation as a cell-based delivery vector

for therapeutic and diagnostic purposes. Cell-based

treatment modalities attempting to harness the bodies’

own physiology for therapeutic benefit have gained

traction over the last few years in a variety of diseases

and are sure to represent a growing trend in promising

anticancer strategies of the future.
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Abstract:
Circulating bone marrow-derived Mesenchymal Stem Cells (BM-MSCs) have an 

innate tropism for tumor tissue in response to the inflammatory microenvironment 
present in malignant lesions. The prostate is bombarded by numerous infectious & 
inflammatory insults over a lifetime. Chronic inflammation is associated with CXCL12, 
CCL5, and CCL2, which are highly overexpressed in prostate cancer. Among other 
cell types, these chemoattractant stimuli recruit BM-MSCs to the tumor. MSCs are 
minimally defined as plastic-adhering cells characterized by the expression of CD90, 
CD73, and CD105 in the absence of hematopoietic markers, which can differentiate 
into osteoblasts, chondrocytes, and adipocytes. MSCs are immunoprivileged and 
have been implicated in tumorigenesis through multiple mechanisms, including 
promoting proliferation, angiogenesis, and metastasis, in addition to the generation 
of an immunosuppressive microenvironment. We have demonstrated that MSCs 
represent 0.01-1.1% of the total cells present in core biopsies from primary human 
prostatectomies. Importantly, these analyses were performed on samples prior to 
expansion in tissue culture. MSCs in these prostatectomy samples are FAP-, CD90-, 
CD73-, and CD105-positive, and CD14-, CD20-, CD34-, CD45-, and HLA-DR-negative. 
Additionally, like BM-MSCs, these prostate cancer-derived stromal cells (PrCSCs) were 
shown to differentiate into osteoblasts, adipocytes, & chondrocytes. In contrast to 
primary prostate cancer-derived epithelial cells, fluorescently-labeled PrCSCs & BM-
MSCs were both shown to home to CWR22RH prostate cancer xenografts following 
IV injection. These studies demonstrate that not only are MSCs present in sites of 
prostate cancer where they may contribute to carcinogenesis, but these cells may 
also potentially be used to deliver cytotoxic or imaging agents for therapeutic and/
or diagnostic purposes. 

Introduction

The prostate is subjected to numerous infectious and 
inflammatory insults over the course of a man’s lifetime, 
ranging from dietary carcinogens to physical trauma to 
viral and bacterial pathogens [1]. In fact, greater than 80% 
of men have evidence of inflammation in their prostate 
at biopsy [2]. Furthermore, prostatitis likely effects all 
men at some point during their life, at least acutely [1-
2]. While many of these inflammatory lesions will be 
resolved naturally without intervention, a subset of these 

will go on to develop clinical symptoms as a result of 
chronic inflammation. Chronic inflammation has been 
suggested as an initiating event in prostate carcinogenesis 
as evidence of a leukocytic infiltrate is frequently present 
at sites of prostatic intraepithelial neoplasia (PIN) and 
proliferative inflammatory atrophy (PIA), prostate cancer 
precursor lesions [1].

Mesenchymal stem cells (MSCs) are adult stem 
cells that have recently gained attention as potent 
modulators of both the innate and adaptive immune 
responses [3-5]. MSCs have been minimally defined by 
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the International Society for Cell Therapy (ISCT) as adult 
stem cells of fibroblastoid morphology that can adhere to 
tissue culture plastic, express CD73, CD90, and CD105 in 
the absence of hematopoietic lineage markers, including 
CD11b, CD14, CD19, CD34, CD45, CD79a, and HLA-
DR [4, 6-7]. Additionally, these cells have the ability to 
differentiate into cells of the mesoderm lineage, including 
adipocytes, chondrocytes, and osteoblasts [6], but may 
also include additional cell types such as pericytes [4, 
8-9], myocytes [9-10], and neurons [11-13], though the 
latter is the subject of controversy [14-15]. Due to the lack 
of HLA-DR expression and the associated co-stimulatory 
molecules, MSCs are immunoprivileged and thus escape 
immune surveillance [3-4, 16].  Furthermore, MSCs have 
been shown to mediate immunosuppression through 
multiple mechanisms involving nearly every component 
of the immune system, both the innate and adaptive arms 
[3-5]. MSCs traffic to sites of inflammation through the 
action of soluble chemokines and cytokines emanating 
from these lesions [17-19]. MSCs have been shown to 
express a great number of the cognate receptors for these 
chemokines and cytokines, which have been shown to 
mediate their homing properties [17].

This latter point is particularly relevant, because 
the prostate has frequently been shown to contain sites of 
inflammation, and prostate cancer expresses high levels 
of pro-inflammatory stimuli, including CXCR4, CCL5, 
and CCL2 [18, 20-22]. In 2007, Lin et al. characterized 
stromal cells from benign prostatic hyperplasia (BPH) 
tissue that had multi-lineage differentiation potential 
consistent with MSCs [23]. However, because these 
stromal cells lacked the ability to differentiate into 
neurons, the authors concluded that these cells did not 
represent MSCs [23]. In 2010 and 2012, however, it was 
demonstrated that the ability of MSCs to differentiate into 
neuronal cells is highly dependent on the age of the donor 
[13, 24]. These studies documented that MSCs derived 
from older donors (>45) lose the ability to differentiate 
into neuronal cells [13, 24]. Therefore, since the Lin et al. 
study utilized BPH tissue from patients older than 45, this 
differentiation potential would be consistent with MSCs 
derived from older donors. In the data presented herein, 
we demonstrate that a population of cells can be isolated 
from primary prostate cancer specimens prior to expansion 
in tissue culture that is consistent with an MSC phenotype. 
These primary prostate cancer stromal cells or PrCSCs are 

Figure 1: Morphological Similarities between PrCSCs and hBM-MSCs. Prostate cancer-derived stromal cells (PrCSCs) and 
human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have similar morphologies at low (A and C) and high (B and D) 
densities (representative phase-contrast images). Both PrCSCs and hBM-MSCs stain positive for mesenchymal markers, alpha-smooth 
muscle actin (aSMA) (green, E and G) and vimentin (Vim) (green, F and H), but not epithelial markers, cytokeratin 5 (I and K) or 
cytokeratin 8 (J and L) by immunofluorescence. Nuclei counterstained with DAPI (blue, E-L).
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FAP-, CD90-, CD105-, and CD73-positive in the absence 
of CD14, CD20, CD34, CD45, and HLA-DR expression. 
Furthermore, a subset of these cells is able to differentiate 
into osteoblasts, adipocytes, and chondrocytes; thereby, 
demonstrating their multipotent nature. Like bone marrow-
derived MSCs (BM-MSCs), these PrCSCs can traffic to 
sites of prostate cancer in vivo.

Results

Multi-lineage Differentiation Potential of Human 
Prostate Cancer-derived Stromal Cells

Tissue cores of human prostatectomy specimens 
were obtained immediately following surgery, dissociated 
into a single cell suspension, and placed in tissue culture 
(RPMI) media supplemented with 10% fetal bovine 
serum (FBS). From these explanted cells, outgrowth 
of fibroblast-like prostate cancer-derived stromal cells 
(PrCSCs) (Figure 1A, B) was observed that had a similar 
morphology to human bone marrow-derived MSCs (hBM-

MSCs) (Figure 1C, D). If a portion of the same cellular 
suspension was cultured in keratinocyte serum-free media 
(K-SFM), basal-like prostate-derived epithelial cells 
(PrECs) were obtained [25-28]. Both hBM-MSCs and 
PrCSCs stained positive for alpha-smooth muscle actin 
(aSMA) (Figure 1E, G) and vimentin (Vim) (Figure 1F, 
H), but not cytokeratins 5 (CK5) (Figure 1I, K) or 8 (CK8) 
(Figure 1J, L). These results are the absolute opposite of 
those obtained for PrECs, which are negative for aSMA 
and Vim, but positive for CK5 and CK8 [25-28]. Similar 
to hBM-MSCs (Figure 2Q, S, T), differentiation of 
PrCSCs into adipocytes (Oil Red O-positive) (Figure 2B, 
G, L), osteoblasts (Alizarin Red-positive) (Figure 2D, I, 
N), and chondrocytes (Safranin O-positive) (Figure 2E, 
J, O) was observed if the cells were cultured under the 
appropriate induction conditions, but not in the uninduced 
controls (Figure 2A, C, F, H, K, M, P, R). Furthermore, 
these cells were shown to be fibroblast activation protein 
(FAP)+, CD90+, CD105+, CD73+, and alpha-smooth muscle 
actin (aSMA)+ by flow cytometry in the absence of CD45, 
CD34, CD11b, CD19, and HLA-DR expression (Table 1). 
In contrast, PrECs do not differentiate into these cell types 
under the same conditions (data not shown). Importantly, 

Figure 2: Multi-lineage Differentiation of PrCSCs and hBM-MSCs. PrCSCs derived from multiple patients (PrCSC-2, -4, 
-6) are able to differentiate into adipocytes (B, G, and L), osteoblasts (D, I, and N), and chondrocytes (E, J, and O) when placed in the 
appropriate induction media as defined by positive staining for lipid vacuoles (adipocytes, Oil Red O), calcium mineralization (osteoblasts, 
Alizarin Red S), and glycosaminoglycans (chondrocytes, Safranin-O), respectively. Differentiation indicated by red staining in each. In 
contrast, no differentiation is observed when these cells are not cultured in the presence of the various inducing factors (adipocytes: A, F, 
K, and P; osteoblasts: C, H, M, and R). Differentiation into these three lineages is one of the defining characteristics of mesenchymal stem 
cells as demonstrated by the hBM-MSC positive controls (Q, S, and T). 
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only a subset of cells within PrCSCs derived from a single 
donor possesses this tri-lineage differentiation potential 
(Figure 2A-O). In addition, not all PrCSCs derived from 
different patients were able to differentiate into all lineages 
(Table 1). Interestingly, the multi-lineage differentiation 
potential of the PrCSCs does not appear to correlate with 
Gleason Score (Table 1). 

Quantification of Mesenchymal Stem Cells in 
Human Prostate Cancer

To eliminate potential artifacts resulting from 
selection events associated with tissue culture, we 
optimized a flow cytometry-based assay to directly 
quantify the number of MSCs present in human prostate 
cancer samples directly from the patient prior to expansion 
in culture. Again, tissue cores of prostatectomy specimens 
were obtained immediately following surgery and digested 

into a single cell suspension using a combination of 
mechanical and enzymatic methods. Following labeling 
with either an MSC phenotyping cocktail (CD73, CD90, 
CD105, CD14, CD20, CD34, CD45, and HLA-DR) 
(Figure 3A) or an antibody isotype control cocktail 
(Figure 3B), these dissociated cells were analyzed by flow 
cytometry. MSCs within this population of cells were 
defined as being CD73, CD90, and CD105 triple-positive 
in the absence of CD14, CD20, CD34, CD45, and HLA-
DR labeling (Figure 3). First, cells staining positive for 
the tested lineage markers were excluded from further 
analysis. Next, the CD73-positive cells within this lineage-
negative population were selected. Finally, the number 
of MSCs present in the prostatectomy specimens were 
quantified by determining the number of CD73-positive, 
lineage-negative cells that were also double-positive 
for CD90 and CD105 (Figure 3). Of the 10 specimens 
analyzed in this study, MSCs represented between 

Figure 3: Method for Quantifying MSCs in Primary Human Prostatectomy Samples. MSCs were quantified from primary 
human prostatectomy specimens using an optimized flow cytometry assay (A-B). Prostatectomy samples were digested into a single cell 
suspension using a combination of enzymatic and mechanical methods. At least 10,000 cells were initially gated (R1) on the basis forward 
and side scatter (FSC and SSC, respectively). From this initial population, lineage-negative cells (CD14-, CD20-, CD34-, CD45-, HLA-DR-) 
were selected (R2) and analyzed for expression of CD73 (R3). These lineage-negative, CD73-positive cells were further analyzed for the 
co-expression of CD90 and CD105. MSCs were defined as being lineage-negative and triple-positive for CD73, CD90, and CD105 (red 
box). Final quantification was performed by subtracting the number of events meeting these criteria in the IgG isotype control cocktail 
analysis (red box, B) from the events detected in the sample stained with the MSC phenotyping cocktail (red box, A). Importantly, all 
samples were analyzed within 3 hrs post-surgery.
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approximately 0.01 and 1.1% of the overall population of 
cells within the digested prostatectomy tissue (Table 2). As 
with the multi-lineage differentiation potential of PrCSCs 
derived from comparable prostatectomy specimens, there 
does not appear to be a relationship between the quantity 
of MSCs present in a particular sample and Gleason grade; 
however, the small number of samples characterized in 
this analysis preclude any conclusive judgments (Table 
2). For comparison, CD31+ endothelial cells represented 
1.89% of the cell population in the one prostatectomy 
specimen analyzed.

Trafficking of Prostate Cancer-derived Stromal 
Cells & Mesenchymal Stem Cells to Prostate 
Cancer Xenografts 

Additionally, hBM-MSCs are known to home 
to sites of cancer as a result of the inflammatory 
microenvironment present within these lesions. To 
determine whether PrCSCs also retained this ability, 
fluorescently-labeled cells (1x106) were administered 
intravenously (IV) to animals bearing CWR22RH 
xenografts (3 animals/group). While all cell types tested 
(PrCSCs, hBM-MSCs, and PrECs) were found entrapped 
in the lungs at 4 days post-infusion (Figure 4A, B, and C), 
only the hBM-MSCs and PrCSCs were able to traffic to 
the prostate cancer xenograft (Figure 4D, E, and F). 

Discussion

PrCSCs obtained directly from prostate cancer 
patients, prior to expansion in tissue culture, express 
CD90, CD73, and CD105 in the absence of CD14, 
CD20, CD34, CD45, and HLA-DR as demonstrated 
using an optimized flow cytometry assay (Figure 3, 
Table 2). Additionally, at least a subset of PrCSCs retains 
the ability to differentiate into osteoblasts, adipocytes, 
and chondrocytes (Figure 2). Therefore, PrCSCs fulfill 
all of the currently accepted criteria that are used to 
define MSCs. Importantly, both intra- and inter-patient 

heterogeneity is apparent in the population of cells isolated 
according to the current methods. This is demonstrated by 
the fact that not all PrCSC cultures isolated from different 
patients retained their multi-lineage differentiation 
potential (Table 1), and not all cells within a single culture 
were able to differentiate into all lineages under the 
appropriate induction conditions (Figure 2). Additionally, 
each core from each patient was heterogeneous with 
respect to the amount of cancer present, the number of 
cancer foci, and the degree of inflammation, all of which 
likely effect the number of MSCs quantified in any given 
specimen. Of the 10 prostatectomy specimens analyzed, 
the number of MSCs ranged from 0.01-1.1% of the 
overall cell population (Table 2). In comparison, CD31+ 
endothelial cells, which are known to play absolutely 
critical roles in tumorigenesis [29-30], represented 
1-2% of the cells within sites of prostate cancer. Despite 
MSCs representing a relatively minor population of cells 
within the tumors analyzed, their numbers can reach 
approximately 50% of the endothelial cell content, and 
therefore, they may potentially play a significant role in 
prostate tumorigenesis. Interestingly, MSCs are often 
found in close association with blood vessels where there 
reside in a perivascular niche [9].  

MSCs have previously been shown to influence 
carcinogenesis in a variety of ways, including 
promoting proliferation, angiogenesis, and metastasis, 
in addition to the generation of an immunosuppressive 
microenvironment [5, 7, 31]. Several studies have also 
shown MSCs to have anti-tumorigenic properties mediated 
through immunostimulatory properties and suppression of 
Akt- and Wnt-mediated survival signals [31-34]. Thus far, 
only a few studies have examined the role of MSCs in 
prostate carcinogenesis in vivo, which have predominantly 
demonstrated no effect on tumor growth [33, 35-41]. 
Unfortunately, these studies have primarily relied upon 
the PC3 cell line; therefore, experiments extending these 
observations into a broader range of models are necessary 
prior to making any conclusive judgments on MSCs role 
in prostate carcinogenesis.  To further complicate the 
situation, MSCs have also been shown to give rise to so-

FAP CD90 CD105 CD73 aSMA CD45 CD34 CD11b CD19 HLA-
DR

Adipo-
cytes

Osteo-
blasts

Chondro-
cytes

Gleason 
Score

hBM-MSC1 + + + + + - - - - - + + + N/A
hBM-MSC2 + + + + + - - - - - + + + N/A

PrCSC-1 + + + + + - - - - - - + - 3+3
PrCSC-2 + + + + + - - - - - + + + 3+3
PrCSC-3 + + + + + - - - - - + - - 4+3
PrCSC-4 + + + + + - - - - - + + + 4+3
PrCSC-5 + + + + + - - - - - - - - 4+3
PrCSC-6 + + + + + - - - - - + + + 4+4

Table 1: Expression Profile and Differentiation Capacity of PrCSCs and hBM-MSCs.
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called carcinoma-associated fibroblasts or CAFs [42-44], 
which have been the subject of many investigations into 
cancer and its relationship with the supporting stroma 
[45-50]. Our own data suggests that it is relatively easy to 
expand MSCs from primary human tissue samples under 
standard culture conditions, and these cells together with 
their progeny can quickly become a dominant population 
in the culture. Furthermore, these PrCSCs/MSCs express 
both aSMA and vimentin (Figure 1), the co-expression of 
which is commonly used to define reactive fibroblasts or 
CAFs [50]. This would suggest that many previous studies 
investigating the role of stromal cells derived from primary 
human tissue were actually studying MSCs depending on 
the passage used during the analysis and the frequency of 
MSCs in the starting population. While the mechanisms 
underlying the effects of MSCs in carcinogenesis are not 
fully understood, they are likely related to the complex 
relationship that exists between MSCs and the immune 
system [3, 5] coupled with the heterogeneity of tumor 
microenvironments and the cytokine profile present [18].   

Chronic inflammation potentially resulting from a 
variety of stimuli, including dietary products, infectious 
agents, corpora amylacea-induced physical trauma, 
hormonal changes, and urine reflux, is frequently 
associated with prostate cancer precursor lesions [1-
2]. The presence of Mycoplasma hominis has also been 
suggested as a cause of prostate inflammation [51]; 
however, these results may have been derived from tissue 
collection artifacts associated with transrectal biopsies 
[52]. Regardless of the cause, chronic inflammation has 
been suggested as an initiating event for prostate cancer 
[1-2]. Additionally, prostate cancers typically express 
high levels of pro-inflammatory chemokines, including 
CXCL12 (SDF-1), CCL5 (RANTES), and CCL2 (MCP-1) 

[20-22]. The expression of these cytokines has been shown 
to mobilize systemic reservoirs of inflammatory and 
immunomodulatory cells, including BM-MSCs, which are 
recruited to prostate cancer lesions [17-18]. MSCs express 
an extensive array of cytokine receptors, which have been 
shown to mediate their trafficking to sites of inflammation 
and cancer [17]. Furthermore, MSCs also secrete a large 
number of immunomodulatory, growth, and signaling 
molecules, including TGF-B, GM-CSF, RANTES, CCL2, 
VEGF, HGF, IL-6, and IL-10 [3-4, 19, 53], which may 
help to initiate a self-reinforcing loop that may lead to 
chronic inflammation under pathological conditions and 
contribute to carcinogenesis.  Given the regenerative, 
immunomodulatory and immunotrafficking properties of 
MSCs, it is not surprising to find these cells in the prostate 
during tissue regrowth [54], carcinogenesis (Figure 3, 
Table 2), and inflammation-associated pathologies, such as 
BPH [23]. Placencio et al. have previously demonstrated 
that bone marrow-derived MSCs contributed to prostate 
regrowth following testosterone supplementation in mice 
post-castration [54]. Previous work by Lin et al. has also 
demonstrated that stromal cells consistent with an MSC 
phenotype from older donors can be isolated from BPH 
tissue [23]. The authors concluded that these stromal cells 
did not represent MSCs due to their inability to generate 
neurons, a property that has been shown to decrease with 
the age of the donor [13, 24], and therefore, is likely 
explained by the prevalence of BPH in older men from 
which the tissue analyzed was obtained.  An earlier study 
comparing CD90hi vs. CD90lo primary stromal cells 
isolated from prostate cancer patients also concluded 
that these cells did not represent MSCs [55]. However, 
it should be noted that the differentiation potential of 
these cells was not assayed. Furthermore, CD90hi cells 

Table 2: Quantification of MSCs in Primary Human Prostatectomy Samples.

Sample Gleason 
Score

MSCs 
(%) 

PCa-1 3+3 0.38

PCa-2 3+3 1.10
PCa-3 3+4 0.22
PCa-4 3+4 0.12

PCa-5 3+4 0.01

PCa-6 4+3 1.02

PCa-7 4+3 0.28

PCa-8 4+4 0.14

PCa-9 5+4 0.38
PCa-10 5+5 1.06
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were compared to CD90lo cells rather than CD90neg 
cells, both of which may represent MSCs at different 
stages of differentiation and would explain the observed 
similarities in their expression profiles. The data presented 
herein clearly demonstrates that there is a rare population 
of CD90-positive MSCs present in tissue isolated from 
primary prostate cancer patients (PrCSCs) (Figures 2-3, 
Table 2). 

As described above, there is extensive literature 
demonstrating that BM-MSCs can home to sites 
of prostate cancer based upon the inflammatory 
microenvironment present within these lesions [3, 
17-19]. Due to the lack of HLA-DR expression and 
immunologic co-stimulatory molecules, these cells are 
non-immunogenic even in an allogeneic setting [3-4, 
16]. This suggests that MSCs can be used to systemically 
deliver therapeutic or imaging agents to both primary and 
metastatic prostate cancer deposits throughout the body.  
Additionally, our data suggests that PrCSCs retain this 
tumor trafficking ability as well (Figure 4), which raises 
the possibility of using autologous cells derived from a 
patient’s own prostatectomy specimen to target systemic 
disease; however, ethical concerns related to infusing 
patients with autologous cancer-associated stromal cells 
would be of significant concern with this latter approach. 
Much previous work has attempted to exploit the tumor-
trafficking properties of MSCs derived from a variety 

of non-malignant sources to deliver cytotoxic agents to 
various solid tumor types with mixed results [56-60]. 
Importantly, these studies failed to take into account 
that MSCs traffic to other sites throughout the body, 
including the lungs, bone marrow, and spleen, in addition 
to the tumor; therefore, dose-limiting toxicities can be 
manifested from the delivery of these compounds to 
peripheral non-target tissues. To circumvent this problem, 
a prodrug approach exploiting tumor- or tissue-selective 
activation of a therapeutic compound in which the MSCs 
were used as a vector to enhance drug accumulation within 
the tumor would potentially be of greater therapeutic 
benefit. Additionally, studies by Sarkar et al. have 
demonstrated that cell engineering approaches can be 
used to enhance the homing and engraftment efficiency 
of MSCs in target tissues by mimicking mechanisms of 
leukocyte extravasation [61].

In summary, primary human prostate cancer harbors 
a population of cells consistent with MSCs. Stromal cells 
derived from human prostatectomy specimens (PrCSCs) 
share an expression profile with MSCs derived from the 
bone marrow (BM-MSCs) for all cell surface markers 
analyzed. Like BM-MSCs, these PrCSCs have the 
ability to differentiate into adipocytes, osteoblasts, and 
chondrocytes; thereby, demonstrating their multi-lineage 
differentiation potential.  Both BM-MSCs and PrCSCs 
are able to traffic to prostate cancer xenografts in vivo, 

Figure 4: Tumor Trafficking of PrCSCs and hBM-MSCs to Human Cancer Xenografts in Mice. PrCSCs (A) and hBM-
MSCs (B), but not PrECs (C), traffic to prostate cancer xenografts in vivo following systemic infusion. Fluorescently-labeled (CM-DiI, 
red) PrCSCs, hBM-MSCs, and PrECs (1 x 106) were infused intravenously (IV) into immunocompromised mice bearing subcutaneous 
CWR22RH xenografts (3/group). Four days post-infusion, lungs and tumors were harvested and analyzed by fluorescence microscopy for 
the presence of CM-DiI-labeled cells. In contrast to the xenografts, all three cell types were found entrapped in the lungs following infusion 
(D-F). Nuclei counterstained with DAPI (blue). At least three images analyzed per tissue per animal, representative images shown.
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likely as a result of the pro-inflammatory cytokine and 
chemokine milieu present. Therefore, MSCs represent 
a potential drug delivery vector for future therapeutic 
approaches targeting both local and metastatic prostate 
cancer.

Methods

Reagents

Rat anti-human CD11b-APC (clone M1/70.15.11.5), 
mouse anti-human CD19-PE (clone LT19), mouse 
anti-human CD34-PE (clone AC136), mouse anti-
human CD45-APC (CLONE 5B1), mouse anti-human 
CD326(EpCAM)-FITC (clone HEA-125), mouse anti-
human CD326(EpCAM)-PE (clone HEA-125), mouse 
anti-human CD326(EpCAM)-APC (clone HEA-125), 
and mouse anti-human HLA-DR-PerCP (clone AC122) 
antibodies were purchased from Miltenyi Biotec, Inc. 
(Bergisch Gladbach, Germany). Mouse anti-human 
HLA-DR-APC (clone LN3), mouse anti-human CD73-
APC (clone AD2), mouse anti-human CD105-PE (clone 
SN6), mouse anti-human CD326(EpCAM)-biotin 
(clone 1B7) and mouse anti-human FAP (clone F11-
24) were purchased from eBioscience (San Diego, CA). 
Mouse anti-human CD90-FITC (clone F15-42-1) was 
purchased from Millipore (Billerica, MA). Mouse anti-
human aSMA-FITC (clone 1A4) was purchased from 
Abcam (Cambridge, MA). Mouse anti-human CK5 
(clone XM26) was purchased from Vector Laboratories 
(Burlingame, CA). Mouse anti-human CK8 (clone LP3K) 
was purchased from Santa Cruz (Santa Cruz, CA). Mouse 
anti-human vimentin (clone LN-6) was purchased from 
Sigma-Aldrich (St. Louis, MO). Goat anti-mouse Alexa 
Fluor 488, Roswell Park Memorial Institute (RPMI)-1640 
medium, keratinocyte-serum free medium (K-SFM), 
Hank’s Balanced Salt Solution (HBSS), L-glutamine, 
and penicillin-streptomycin were purchased from Life 
Technologies-Invitrogen (Carlsbad, CA). Fetal bovine 
serum (FBS) was purchased from Gemini Bioproducts 
(West Sacramento, CA). 

Primary Cell Isolation and Tissue Culture

hBM-MSCs were obtained from Lonza (Walkerville, 
MD). Primary prostate epithelial and stromal cells from 
patient radical prostatectomy specimens were isolated 
at our institution in accordance with an Institutional 
Review Board approved protocol according to previously 
published protocols [25-28, 62] for the cell cultures 
used in the differentiation assays, immunofluorescence 
staining, and cell surface expression studies. hBM-
MSCs and PrCSCs were cultured in RPMI-1640 medium 
supplemented with 10% FBS, 1% L-glutamine, and 1% 

penicillin-streptomycin in a 5% CO2, 95% air humidified 
incubator at 37˚C. PrECs were grown in K-SFM with 
defined growth factors [25-28] in the same 5% CO2, 95% 
air humidified incubator at 37˚C.

Immunofluorescence 

Immunofluorescent staining for aSMA, Vim, CK5, 
and CK8 were performed using the antibodies listed above 
according to previously published protocols [27-28]. 
Nuclei are counterstained with DAPI using ProLong Gold 
anti-fade with DAPI (Invitrogen). Images were captured 
using a Nikon (Melville, NY) Eclipse Ti Fluorescent scope 
equipped with a Nikon DS-Qi1Mc camera NIS-Elements 
AR3.0 imaging software.

Multilineage Differentiation

To assay adipogenic differentiation, 2 x 105 cells 
were plated in a 6-well plate and allowed to reach 100% 
confluence (3 replicates/cell type) in an incubator with 
5% CO2 at 37˚C. The media was then changed to hMSC 
adipogenic induction medium (Lonza) supplemented 
with h-insulin (recombinant), L-glutamine, MCGS, 
dexamethasone, indomethacin, IBMX (3-isobuty-l-methyl-
xanthine), GA-1000. According to the manufacturer’s 
instructions, media was changed every three days 
alternating between induction and maintenance medium 
for three complete cycles. After the final cycle, cells 
remained in the maintenance medium for an additional 
7 days prior to evaluation of adipogenic differentiation. 
Negative control cells were grown in maintenance media 
only. Adipogenic differentiation was assayed using the 
lipid stain Oil Red O (Sigma) to identify lipid vacuoles in 
differentiated cells.

To assay osteogenic differentiation, 3 x 104 cells were 
plated in a 6-well plate and allowed to adhere overnight 
at 37˚C in an incubator with 5% CO2 (3 replicates/cell 
type). According to the manufacturer’s instructions, the 
media was then changed to Osteogenic Induction media 
(Lonza) supplemented with dexamethasone, L-glutamine, 
ascorbate, MCGS, b-glycerophosphate. Media was 
changed every 3-4 days for 21 days. Negative control 
cells were cultured in RPMI-1640 supplemented with 
10% FBS, L-glutamine, penicillin-streptomycin. After 21 
days, osteogenic differentiation was assayed by staining 
for calcium deposits with Alizarin Red S (Sigma).

To assay chondrogenic differentiation, 2.5 x 105 cells 
were centrifuged at 150 x g for 5 min at room temperature 
and resuspended in 0.5 mL chondrogenic induction 
medium (Lonza) supplemented with dexamethasone, 
ascorbate, ITS, GA-1000, sodium pyruvate, proline, 
L-glutamine, and TGF-B3 in a 15 mL polypropylene 
conical tube according to the manufacturer’s instructions 
(3 replicates/cell type). The caps were loosened a half-



Oncotarget 2013; 4: 106-117114www.impactjournals.com/oncotarget

turn and placed at 37˚C in an incubator with 5% CO2. The 
media was changed every 3 days for 21 days while being 
careful to avoid aspirating the pellet.  After 21 days, cell 
pellets were fixed in formalin and paraffin-embedded for 
histological processing. Negative controls were cultured 
in the absence of TGF-B3. Chondrogenic differentiation 
was assayed by staining for glycosaminoglycans with 
Safranin-O (Sigma).

Analysis of Cell Surface Markers and MSC 
Quantification by Flow Cytometry

To analyze cell surface marker expression, 
prostatectomy cores were dissociated into a single cell 
suspension as described previously [25-28, 62]. Flow 
cytometry analyses were also performed as described 
previously [26-27]. Briefly, all antibody incubations, 
washes, and flow cytometric analyses were performed in 
MACS cell sorting buffer (Miltenyi).  Antibody labeling 
was performed at 4˚C for 20 min with a 1:10 dilution 
of the antibody in a volume of 100 µl per 1x106 cells. 
The cells were washed in 1 mL cold cell sorting buffer, 
resuspended in 1.0 mL cell sorting buffer and passed 
through a 0.2 m filter into a flow analysis tube (BD 
Biosciences, Franklin Lakes, NJ). Analysis was performed 
on a BD FACSCalibur flow cytometer.

To obtain cell suspensions for quantification of 
MSCs by flow cytometry prior to expansion in tissue 
culture, the following protocol was optimized. Twenty-five 
18-gauge biopsy needle cores (C. R. Bard, Inc., Tempe, 
AZ) were obtained and washed in HBSS. Five randomly 
selected cores were fixed, paraffin-embedded, and 
sectioned for H&E staining and pathological confirmation. 
The remaining cores were digested using a human tumor 
dissociation kit (Miltenyi) and a gentleMACS dissociator 
(Miltenyi) according to the manufacturer’s instructions. 
The dissociated cell suspension was then passed through 
a 70 um pre-separation filter (Miltenyi). The sample was 
centrifuged at 250 x g for 5 min and resuspended in RBC 
lysis buffer (Miltenyi) for 10 min at room temperature. 
The RBC-negative cell suspension was centrifuged at 
250 x g for 5 min and resuspended in MACS cell sorting 
buffer (Miltenyi) to determine cell number and viability by 
trypan exclusion using a Cellometer Auto T4 (Nexcelcom 
Bioscience, Lawrence, MA) prior to downstream flow 
cytometry applications. 

All antibody incubations, washes, and flow 
cytometric analyses were performed in MACS cell sorting 
buffer (Miltenyi).  Antibody labeling was performed at 4˚C 
for 10 min with a 1:10 dilution of with a MSC Phenotyping 
Cocktail (anti-CD14-PerCP, anti-CD20-PerCP, anti-
CD34- anti-PerCP, anti-CD45-PerCP, anti-CD73-APC, 
anti-CD90-FITC, and anti-CD105-PE) or Isotype Control 
Cocktail (Mouse IgG1-FITC, Mouse IgG1-PE, Mouse 
IgG1-APC, Mouse IgG1-PerCP, and Mouse IgG2a-PerCP) 

provided in the human MSC phenotyping kit (Miltenyi) 
in a volume of 100 ul per 1x106 cells according to the 
manufacturer’s instructions. Additionally, anti-HLA-DR-
PerCP (Miltenyi) was added to the MSC Phenotyping 
Cocktail. The cells were washed in 1 mL cold cell sorting 
buffer, resuspended in 0.5 mL cell sorting buffer and 
passed through a 0.2 um filter into a flow analysis tube. 
Analysis was performed on a BD FACSCalibur flow 
cytometer. All compensation controls were performed 
using anti-EpCAM antibodies directly conjugated to 
FITC, PE, APC, or Biotin followed by anti-Biotin-PerCP 
on aliquots of the same cell suspension to ensure proper 
gating and instrument settings prior to sample analysis.  
For sample analysis, cell suspensions labeled with either 
the Isotype Control or MSC Phenotyping Cocktails were 
gated (R1) on the basis of forward and side scatter (FSC 
& SSC, respectively) (Figure 3). Cells gated in R1 were 
then selected based on being lineage-negative (R2), i.e., 
negative for CD14, CD20, CD34, CD45, and HLA-DR 
expression. Next, CD73-positive cells (R3) within these 
lineage-negative cells were further analyzed for co-
expression of CD90 and CD105. MSCs were defined 
as cells that were triple-positive for CD90, CD73, and 
CD105 in the absence of the tested lineage markers and 
quantified by subtracting the number of events, if any, 
that met these criteria in the isotype control sample. This 
corrected number was used as the numerator to determine 
the percentage of MSCs present in the sample. At least 
10,000 events were collected in R1, which defined the 
number of total cellular events and was used as the 
denominator in the above calculation. Importantly, all 
samples were processed and analyzed within 3 hrs post-
surgery.

Cell Trafficking to Prostate Cancer Xenografts in 
vivo

Animal studies were performed according to 
protocols approved by and performed in accordance with 
the guidelines of the Animal Care and Use Committee of 
the Johns Hopkins University School of Medicine. For 
CWR22RH xenografts, 50 mg of minced tumor tissue 
that had passed through a sterile tissue strainer and washed 
with HBSS was implanted subcutaneously in 100 ul of 
80% Matrigel (BD Biosciences, Sparks, MD) in the flanks 
of NOG-SCID mice. 

To assay tumor trafficking, human PrCSCs, hBM-
MSCs (Lonza), or PrECs were fluorescently-labeled ex 
vivo with CM-DiI (Invitrogen) and washed according 
to the manufacturer’s instructions. Subsequently, 1x106 
cells were injected intravenously into NOG-SCID mice 
bearing subcutaneous CWR22RH tumors (3 mice/group). 
Animals were euthanized by CO2 asphyxiation at 4 days 
post-infusion. The lungs and tumors were harvested from 
each mouse, flash frozen in VWR Clear Frozen Section 
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Compound (Radnor, PA), and 4 µm sections were cut on a 
Shandon Cryotome E (Thermo Scientific, Waltham, MA). 
Nuclei are counterstained with DAPI using ProLong Gold 
anti-fade with DAPI (Invitrogen). Images were captured 
using a Nikon (Melville, NY) Eclipse Ti Fluorescent scope 
equipped with a Nikon DS-Qi1Mc camera NIS-Elements 
AR3.0 imaging software.
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